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Abstract

It is still unknown how associative biological memories operate. Hopfield networks are

popular models of associative memory, but suffer from spurious memories and low ef-

ficiency. Here, we present a new model of an associative memory that overcomes these

deficiencies. We call this model Sparse Associative Memory (SAM) because it is based

on sparse projections from neural patterns to pattern-specific neurons. These sparse

projections have shown to be sufficient to uniquely encode a neural pattern. Based on

this principle, we investigate theoretically and in simulation our SAM model, which

turns out to have high memory efficiency and a vanishingly small probability of spu-

rious memories. This model may serve as a basic building block of brain functions

involving associative memory.



1 Introduction

Associative memory is one of the main brain functions. The operation of biological

associative memories is still unknown, but evidence suggests that associative memory

is governed by attractor dynamics (Wills et al., 2005). Networks with attractor dynamics

iterate a memory state until observing a stable pattern that matches a stored one. The

most influential computational model of such networks has been the Hopfield network

(Hopfield, 1982).

A Hopfield network is a fully-connected recurrent neural network with weighted

connections between neurons, governed usually by discrete-time synchronous dynam-

ics. Typically, the weights are symmetric, and the resulting energy function (Hamilto-

nian) guides the neural activation to the network’s stable patterns. Hopfield networks

have demonstrated a key feature of associative memories, the completion of partial pat-

terns and reconstruction of perturbed patterns. Unfortunately, however, this network

model has three major drawbacks: first, being fully connected is biologically unrealis-

tic (Minai & Levy, 1993; Lansner, 2009). Moreover, experiments suggest that sparsely

distributed activity patterns encode information (Barth & Poulet, 2012), whereas in the

Hopfield network, a large fraction of neurons is active. Second, the efficiency of storage

is low, i.e., the number of patterns that can be stored is low relative to the number of in-

formation needed (McEliece et al., 1987), and, third, the network suffers from spurious

memories, i.e., with probability close to 1, a random input results in a stable neural ac-

tivity that differs from any previously learned pattern (Bruck & Roychowdhury, 1990).

There have been many efforts to improve the efficiency of Hopfield networks (e.g.,

by Storkey (1997) and Hopfield (2008) ), but they still suffer from spurious memories
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when presented with random input. A recent variant of Hopfield networks is dense as-

sociative memory (Krotov & Hopfield, 2016), where the capacity of the network can

be improved by using higher-order polynoms for the energy function. The theory, how-

ever, assumes equal probability for active versus non-active neurons, and the network

performs poorly if only a small percentage of input neurons is active, which is at odds

with the sparse activations found in the brain (Barth & Poulet, 2012). Another line of

research looked at different architectures for associative memory, e.g., organizing the

memory network into cliques, dividing neurons into clusters, which improved efficiency

(Gripon & Berrou, 2011; Mofrad & Parker, 2017), but restricts learning to patterns ac-

tivating one neuron per cluster. Another example is using the Hopfield dynamics on

sparse networks, e.g., scale-free networks, which can increase capacity but at the cost

of higher retrieval errors (Kim et al., 2017).

To create a computational model of associative memory that overcomes the above

problems, we start with the concept that a single neuron can reliably detect a neural

pattern even with only relatively few synaptic connections (Hawkins & Ahmad, 2016).

Hawkins & Ahmad (2016) demonstrate that with high probability two neural patterns

can be distinguished from each other based solely on the activation of a small subsample

of active neurons. Here, we investigate this concept for creating associative memories.

We demonstrate a new sparse associative memory that has much better memory effi-

ciency and a greatly reduced probability of spurious activations. When adding inhibi-

tion to the recurrent dynamics, we found that the recurrent dynamics eliminate spurious

activations in each iteration step until convergence.

The remainder of this article is organized as follows. Section 2 describes the new

3



sparse associative memory (SAM) and presents two variants, one with and one without

inhibition. Section 3 shows the three main results: first, the theoretical computation

of the memory’s retrieval performance and dependence on model parameters, second,

an analysis of the memory efficiency, and, third, simulation results comparing SAM

against the Hopfield network and showing the benefit with respect to spurious memo-

ries. Finally, Section 4 concludes with a discussion of related work and highlights key

results.

2 Sparse Associative Memory

Our sparse associative memory consists of an input layer of n neurons, a layer of hidden

neurons, and connections between the two layers. The memory operates in two modes:

training and recall.

Initially, before any training, the memory has an input layer of n neurons without

hidden neurons or connections. In training, patterns are stored one at a time. A binary

pattern to be stored activates a subset of the input layer neurons. To store the pattern,

a set of h hidden neurons is created. Then, connections are formed between the input

and hidden neurons (Figure 1). Herein lies the main difference to Hopfield or auto-

associative memory networks (Hassoun, 1993), which map from the input neuron onto

the same or an equivalent set of n neurons. Instead, we sparsely project onto pattern-

specific neurons (Hawkins & Ahmad, 2016).

In our model, connections between input layer and hidden layer are formed proba-

bilistically. With a given probability, pS , a directed connection is formed from an active
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neuron in the input layer to a hidden neuron. This formation of connections is a form of

Hebbian learning - neurons wire together if they fire together (Löwel & Singer, 1992).

Forming connections probabilistically differs from the model by Hawkins & Ahmad

(2016), who instead use a given number of connections. Using a given number is bio-

logically less plausible because it would require a computational mechanism to count

the number of connections during formation.

After connecting the hidden neurons, we create a second set of connections that

project from the hidden neurons back onto the input neurons (Figure 1): each hidden

neuron assigned to the stored pattern projects to each active neuron. For the next train-

ing pattern, a new set of h hidden neurons is created, and connections are formed as

described above. Therefore, in total, we have Nh hidden neurons, where N is the

number of stored patterns.

We consider two settings of our memory, one without inhibitory recurrent connec-

tions and one with. For the first, the projections from the hidden neurons are only

excitatory and connect only to the active neurons (Figure 1a). For the latter, additional

inhibitory connections are formed between the hidden neurons and the inactive input

neurons (Figure 1b). Here, a hidden neuron may project to all inactive input neurons or

only to a subset of these neurons. For simplicity, we investigated only the case where

the inhibitory connections project to all inactive input neurons.

In recall, a pattern is presented to the input neurons, and the associative memory

iterates the activations of the input and hidden neurons until a stable pattern emerges.

The neural dynamics are modeled as McCulloch-Pitts neurons: if a neuron fires, it sends

a spike with value +1 through all its outgoing connections (Hoffmann et al., 2011). An
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(a) (b)

Figure 1: Associative memory with only excitatory (a) or excitatory and inhibitory

(b) connections between input and hidden neurons. For clarity, in (b), not all re-

current connections are shown.

inhibitory connection multiplies this value by -1. At the receiving neuron, all incoming

spike values are added together; if the sum is above a predetermined threshold, then the

receiving neuron becomes active and fires. For the hidden neurons, we use a variable

threshold of θ and for the input neurons a threshold of 1.

Let {xi} be a new input pattern for recall, where xi is the activity of neuron i.

Moreover, let Wji be the binary connectivity matrix between input and hidden neurons.

Then, the activity, yj(t) of a hidden neuron, j, at iteration step t, is computed as

yj(t) = H

(
n∑
i=1

Wjixi(t)− θ

)
∀j , (1)

where H is the Heaviside step function with H(x ≥ 0) = 1. The hidden neurons then

activate again the input neurons through the connectivity matrix Ukj , where Ukj = −1

for inhibitory connections,

xk(t+ 1) = H

(
Nh∑
j=1

Ukjyj(t)− 1

)
∀k . (2)

We iterate x(t + 1) = f(x(t)), with f defined through Eqs. (1) and (2), for a given
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number of steps or until convergence, i.e., f(x(t)) = x(t).

Figure 2 shows an example of storing three patterns into our sparse associative mem-

ory with inhibition. Here, two hidden neurons were used per pattern. After storage,

noisy versions of the training patterns were presented as input, and the network restored

these patterns to their original shape, using a single iteration step.

Figure 2: Example recall with SAM. After three patterns were stored, the network

could restore noisy versions of these patterns.

3 Results

This section describes the theoretical computation of SAM’s retrieval performance,

memory efficiency, and simulation results.
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3.1 Theoretical Performance

In the theory section, we focus on the retrieval performance of already stored patterns.

For correct retrieval, we expect a pattern x to be recalled after a single iteration pass

through the network, i.e., f(x) = x, because only then the pattern is stable. Other

possible outcomes of f(x) are zero activation, activating the wrong pattern or an inter-

section (for inhibition) or union (without inhibition) of patterns. When activating an

intersection, it is still possible that a second iteration step will yield the correct pattern,

but then the third iteration will revert back to the intersection because f(x) was the in-

tersection (which is rare but can happen). Therefore, we are interested in the probability

of f(x) = x for stored patterns.

Here, we assume that the training patterns are probabilistically independent. After

storing a training pattern that activates m neurons, the probability that the same pattern

activates the correct hidden neuron is

pc(m) = 1−
θ−1∑
k=0

(
m

k

)
pkS(1− pS)m−k . (3)

The same pattern, however, may also activate a wrong hidden neuron of another stored

pattern. To compute this probability, consider, first, the number b of neurons that over-

lap between our pattern and another pattern (Figure 3). The probability of having b

overlapping neurons is computed as

po(b) =

(
m
b

)(
n−m
m−b

)(
n
m

) , (4)

where
(
m
b

)
is the number of possibilities that b neurons fall inside the wrong pattern

and
(
n−m
m−b

)
the number of possibilities that m − b neurons fall outside the wrong pat-

tern. For po(b), we can theoretically derive an upper bound that more easily shows the
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dependence on n and m. Writing the factorial terms in product form, we observe

po(b) <
1

b!

(
m2

n− 2m+ b

)b
, (5)

assuming n > m. That is, with increasing n, the probability of an overlap between two

patterns decreases and gets arbitrarily close to zero.

Figure 3: Neurons between stored patterns may overlap.

Each activated overlapping neuron is connected with probability pS to the hidden

neuron of the wrong pattern. So, the probability pw to activate a hidden neuron of a

specific wrong pattern is

pw(m) =
m∑
b=θ

po(b)pc(b) . (6)

For the following computation of correct-retrieval probabilities, we consider the

with and without inhibition cases separately. When using inhibition, we get a correct

pattern retrieval if more hidden neurons of that pattern are activated than all other hidden

neurons combined because here, the inhibition suppresses all the positives activations

of other patterns.
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Assume we have h hidden neurons per pattern, then the probability, p+, that a given

number j of hidden neurons of the correct pattern is active is

p+(j) =

(
h

j

)
pc(m)j(1− pc(m))h−j . (7)

On the other hand, the probability of activating less than j undesired hidden neurons is

p−(j) =

j−1∑
l=0

(
(N − 1)h

l

)
pw(m)l (1− pw(m))(N−1)h−l . (8)

We obtain correct retrieval if the majority of activated hidden neurons belong to the

correct pattern, resulting in the final probability of correct retrieval,

pInhib =
h∑
j=1

p+(j)p−(j) . (9)

This theoretical probability for correct retrieval is in good agreement with experi-

ments (Figure 4). In these experiments, we stored into SAM various numbers of random

patterns and tested the retrieval performance for the same patterns. We repeated each

experiment 10 times.

Without inhibition, we get a correct retrieval if at least one correct hidden neuron is

active, but no other hidden neuron gets activated. As a result, we obtain

pNoInhib =
(
1− (1− pc(m))h

)
(1− pw(m))(N−1)h . (10)

Given these theoretical results on the retrieval performance, we can evaluate its

dependence on the parameters, particularly, the number of training patterns, number

of input and hidden neurons, number of active neurons in a pattern (pattern size m),

probability of synaptic connection, pS , and activation threshold, θ. In the following, we

compare SAM with and without inhibition.
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The retrieval performance degrades when increasing the number of stored patterns

(Fig. 4c,d), and a larger number of input neurons enables a larger memory capacity.

For example, for n = 2000, 1000 patterns can be reliably recalled, pInhib ≈ 99.97%.

Inhibition improves the storage capacity.

Increasing the number of hidden neurons, h, improves the retrieval performance if n

is sufficiently large (Fig. 5a,b). With inhibition, when increasing n, the transition from

pInhib = 0 to pInhib = 1 approaches a step function in the limit h→∞.

The optimal firing threshold, θ, depends on the size, m, of a stored pattern and the

probability of synaptic connections, pS . For a given threshold, if m is too small, then

a hidden neuron cannot be activated and retrieval fails. If, on the other hand, m is too

large then the chance of activating a wrong pattern is large and retrieval can fail again.

The parameters m, pS , and θ are closely linked. For best retrieval, there is an optimal

ratio of θ and the average number of connections per pattern, which is m ∗ pS (Fig.

5c,d). With inhibition, this optimal ratio is about 0.6. We used this ratio to compute θ

for all other tests and experiments.

3.2 Memory Efficiency

In this section, we investigate the memory efficiency. The efficiency, η, of a network is

the total number of bits of stored patterns divided by the actual number of bits required

for storage. Here, each pattern consists of n bits. In SAM, each pattern activates a subset

of m input neurons; so, we need mhpS forward and nh backward connections (when

including the inhibitory connections). To encode each forward connection, we need

log2 n + log2 h bits to identify the connecting neurons. For the backward connections,
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we need a n× h binary matrix with entries +1 or -1. As a result, our efficiency is

η =
n

mhpS(log2 n+ log2 h) + nh
. (11)

For example, for n = 2000, h = 2, m = 200, and pS = 0.1, we obtain η ≈ 0.447.

In contrast, for a symmetric Hopfield network, we require n(n − 1)/2 connection

weights, and for each connection, we need log2(n/(2 log n)+1) bits (Gripon & Berrou,

2011), where log is the natural logarithm. Here, all patterns are stored in the same

weight matrix. To compute the efficiency, we need to consider the storage capacity,

which has an upper limit of n/(2 log n) (McEliece et al., 1987). With this number, we

store n2/(2 log n) bits, and the efficiency becomes

ηH =
n

(n− 1) log n log2(n/(2 log n) + 1)
, (12)

e.g., for n = 2000, ηH ≈ 0.0187 — SAM had a 24× larger value. If the size of a pattern,

m, is bounded, the efficiency of SAM scales favorable with the network size, η = 1/h

in the limit n → ∞. In contrast, the efficiency of the Hopfield network decreases to

zero; ηH = 0 in the limit n → ∞ because nH < 1/ log n for sufficiently large n.

This behavior even holds with improvements like Storkey’s rule (Storkey, 1997), where

nH < 1/
√
log n for sufficiently large n.

3.3 Simulation Results

This section shows the robustness of SAM with respect to recalling perturbed patterns,

the effect of the recurrent dynamics on spurious memories, and comparisons against the

Hopfield network. In all experiments, we used the following settings for SAM: h = 2
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hidden neurons, probability of connection, pS = 0.1, and activation threshold for the

hidden neurons, θ = 0.6mpS .

To test for robustness, we stored 1000 random patterns withm = 200 in a SAM with

n = 2000 input neurons. Then, we perturbed each of the training patterns by randomly

selecting a given number of neurons (size of perturbation). For each selected neuron,

were altered its state, i.e., making it active if inactive and inactive if active. Figure

6b shows an example of a perturbed pattern inverting 100 neurons (half the number of

active neurons in a pattern). To calculate the probability of correct retrieval, we tested

each perturbed pattern, iterated SAM for five steps (one step includes one forward and

backward pass), and repeated the entire experiment 10 times.

With inhibition, SAM converged after only two iterations. The change in probability

for correct retrieval was small between the first and second iteration (< 0.1 percentage

points for perturbations ≤ 100 with a maximum of about 0.6 points at 300). For pertur-

bations of up to about 100 neurons, the probability for correct retrieval remained high

(99.4%) when using inhibition (Fig. 6a). Without inhibition, convergence occurred

after one iteration, but the retrieval performance was lower.

We tested the impact of the recurrent dynamics on the probability of spurious mem-

ories. In each experimental run, we stored 1000 random training patterns, and then

tested the network on 1000 new random patterns. For both sets of patterns, the pattern

size was m = 100. For pattern recall, we iterated SAM for ten steps. We averaged the

results from 100 runs for each setting. A spurious memory was a pattern that differed

from all stored patterns and consisted of at least one active neuron.

As a result, when using inhibition, the probability of spurious activations dropped

13



with each iteration step until convergence, which happened after seven steps (Fig. 7a).

Without inhibition, however, the spurious activity got worse after the first iteration step

and converged after the second (Fig. 7b).

For the comparison with the Hopfield network, we stored again random patterns

with m = 100. We varied the number of training patterns and number of input neurons,

n. For the Hopfield network, we used n fully-connected neurons. Because of the hidden

neurons, our network used more neurons in total than the Hopfield network, but still

required less information per stored pattern for the same number n (see Section 3.2).

We tested the networks, first, on perturbed training patterns; here, the perturbation size

was 5. Second, we tested the networks on 1000 newly generated random patterns to

probe for spurious memories. For SAM, in the first test, we used only one iteration step

for recall because one step was sufficient for a small perturbation (see above). In the

second test, we used five iteration steps at which point the network reached almost the

final state at convergence (Fig. 7a).

To train and test the Hopfield network, we used the MATLABTM Neural Networks

Toolbox (Version 8.4 from the Release 2015b), particularly, the newhop function for

training and the net function with five relaxation steps for recall. newhop is based

on Li’s model (Li et al., 1989) and creates a fully-connected symmetric Hopfield net-

work. We repeated all experiments comparing SAM and Hopfield networks ten times

(including training-set generation) to obtain means and standard deviations.

On the perturbed training patterns, the performance of SAM degraded more grace-

fully compared to Hopfield when increasing the number of stored patterns (Fig. 8a,b).

Moreover, when storing 1000 patterns, we could recover a near optimal performance
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(99.4% correct retrieval) with SAM when increasing n to 2000, while the Hopfield net-

work remained at 0% correct retrieval.

When presenting newly generated random patterns, the Hopfield network generated

spurious memories in all cases (Fig. 8c,d). In contrast for SAM, the probability of

spurious memories could be arbitrarily small with sufficiently large n relative to the

number of stored pattern, e.g., < 10−4 for n = 1500 and N = 1000 (Fig. 8c,d).

Moreover, for large n, SAM converged in a single integration step (e.g., for n = 2000

and N = 1000). With smaller n compared to N , occasionally more iteration steps were

required: e.g., for n = 1000 and N = 1000, convergence occurred after 1 step for 66%

of patterns, after 2 steps for 92% of patterns, and after 5 steps for 99.9% of patterns

(the network converged when f(x) = x). With inhibition, the probability of spurious

activations was more than an order of magnitude smaller than without inhibition.

4 Discussion

We investigated theoretically and in simulations a new computational model of asso-

ciative memory, which is based on sparsely subsampling neural patterns (Hawkins &

Ahmad, 2016). This model, SAM, can restore perturbed patterns, while being memory

efficient and having a low probability of spurious memories. We used simple neural

dynamics, assuming only the most basic functionality, namely, a neuron integrates si-

multaneously arriving spikes and fires if the spikes add up to a value above threshold.

Moreover, we assumed Hebbian learning for storing memories.

SAM is a suitable model of associative memory for brain-sized networks. Particu-
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larly, for large n, the retrieval performance was best; memory efficiency was best; spu-

rious memories had the lowest probability, and the computational speed is independent

of n. For a single iteration step, the computational complexity is O(mhN). In contrast,

a fully-connected network, like the Hopfield network, is unrealistic for brain-sized net-

works because it would require too many connections, O(n2). For the fully-connected

Hopfield network, the computational complexity is O(n2) per iteration step for recall

because the neural activity is multiplied by the n× n weight matrix.

Here, for comparison, we considered only fully-connected Hopfield networks, which

are the most common, but researchers studied also variants on sparsely-connected net-

works (Kim et al., 2017; Folli et al., 2018). These works show evidence that the sparsity

improves memory capacity but also come with caveats: Kim et al. (2017) report an in-

crease in retrieval errors, and Folli et al. (2018) count attractors instead of the actual

stored memories and thereby also include spurious activations in their capacity count.

Suppressing spurious activations is the main advantage of SAM over Hopfield networks.

In SAM, the sparsity of connections helps improve memory efficiency and allows

low activation thresholds. We found empirically that the optimal firing threshold, θ,

given the probability of sparse connections, pS , and pattern size, m, is θ ≈ 0.6pSm.

If pS would be 1, i.e., not sparse, then the activation threshold would be too high to

be realistic. Our backward connections were not sparse, but the activation threshold

was only 1 for the input neurons; so, we avoided the problem of unrealistically high

activation thresholds.

As an alternative model, we could have used also sparse backward connections,

which would have to be combined with more hidden neurons, such that their combined
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activity activates an entire stored pattern. Here, the activation threshold for the input

neurons would need to be higher and scale with the number h of hidden neurons. We

leave the investigation of this alternative model for future work.

We found that inhibition helps improving storage capacity and robustness against

perturbations and lowers the probability of spurious memories. This result is consistent

with previous findings showing the benefit of inhibition in the brain (Caspary et al.,

2008; Müllner et al., 2015; Barron et al., 2017). In biological networks, inhibition is

more localized than in SAM (Müllner et al., 2015; Barron et al., 2017). For simplic-

ity, we formed inhibitory connections between hidden neurons and all input neurons

that were not part of a pattern. Alternatively, biologically more realistic is having only

selected/localized inhibitory connections. This setting would result in a retrieval per-

formance that lies between our two results for inhibition and without it, but with the

benefit of having a better memory efficiency: η ∝ n/ log n for large n.

The main benefit of the recurrent dynamics of SAM with inhibition was to reduce

spurious memories. Here, spurious memories happen to be intersections of stored pat-

terns. Applying the network dynamics, f(x), on a random input pattern can result in

an intersection of two or more stored patterns. Applying f(x) again may result in the

same intersection, further shrink it (i.e., an intersection of fewer patterns), or reduce it

to zero. In this way, the recurrent dynamics reduces the probability of spurious memo-

ries. Without inhibition, however, the applying f(x) twice increased the probability of

spurious memories. Interestingly, after the first iteration step, the probability of spuri-

ous activation was about the same for inhibition and without it. The reason is that the

probability for obtaining an intersection of patterns or a union (as in the case without
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inhibition) is about the same after one step because two independent random patterns

of 100 active out of 1000 neurons overlap in at least one neuron with probability close

to 1 (p = 0.99997). Apart from spurious memories, the recurrent dynamics had only

a minor impact on the probability of correct retrieval. When using perturbed patterns,

SAM converged after two iterations, and the result after the second iteration was only

slightly better than after the first.

Gibson & Robinson (1992) presented a sparse associative memory model that is

related to our model. They use a recurrent neural network with sparse excitatory con-

nections and an inhibitory neuron connected to all n input neurons. As in our work,

a pattern consists of a set of active neurons from the pool of input neurons. Different

from our work, however, there are no sparse connections to hidden neurons. This dif-

ference may result in a lower storage capacity: for example, for n = 3000 and pattern

size m = 300, Gibson & Robinson (1992) report that only 50 patterns can be stored

simultaneously when using 2.25 million excitatory connections. In contrast, SAM can

store at least 3000 patterns with 100% correct retrieval using 1.98 million excitatory

connections (h = 2).

Our network architecture, the separation between input and hidden layers, is similar

to R-nets (Vogel, 1998), which use also two layers of neurons and sparse connections

between them. There, however, the author uses symmetric connections, while our con-

nections are asymmetric. In addition, there are differences in the dynamics: R-nets

require more recall iterations (about 15 when storing around 60 patterns) and spurious

neurons limit storage capacity (Vogel, 1998).

In summary, sparsely connecting to neural patterns, as described by Hawkins &
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Ahmad (2016), can give rise to a competitive associative memory model that solves the

problem of spurious memories. This new memory model, SAM, may lack biological

details, but it can be a key model element for neural architectures that mimic brain-like

functions or biological computational principles without excessively reproducing the

details that are still poorly understood. In future work, we plan to expand SAM to build

a model that explains the Aha Moment (Kounios et al., 2008).
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Figure 4: Probability of correct pattern recall depending on the number of stored

patterns. Theoretical predictions matched experimental values for n = 900 (a)

and n = 1200 (b). Experimental data show mean± SD. The retrieval performance

depends on the number of input neurons, shown for SAM without (c) and with

inhibition (d). For all results in this figure, h = 2, m = 200, pS = 0.1, and θ = 12.
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Figure 5: Probability of correct pattern recall depending on network parameters

for storing 1000 patterns, showing dependence on the number of input, n, and

hidden neurons, h, for SAM without (a) and with inhibition (b). Here, m = 200,

pS = 0.1, and θ = 12. In addition, recall depends on the normalized firing thresh-

old, θ/(mpS), showing results for SAM without (c) and with inhibition (d). Here,

using n = 2000, h = 2, and pS = 0.1.
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Figure 6: Robustness to perturbation, showing probability of correct pattern recall

with inhibition and without inhibition depending on size of perturbation (a) and

example perturbation of size 100 of a rectangular neural activation pattern (b).

Here, the experiments used 1000 stored patterns, n = 2000, h = 2, m = 200,

pS = 0.1, and θ = 12. Data show mean ± SD.
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Figure 7: Recurrent dynamics in SAM reduce spurious activations when using

inhibition (a) but increase them without inhibition (b). Here, the experiments used

1000 stored patterns, n = 1000 (unless specified otherwise), h = 2, m = 100,

pS = 0.1, and θ = 6, and data show mean ± SD.
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Figure 8: Comparison between SAM and the Hopfield network. First, comparing

probability of correct pattern retrieval as a function of the number of stored pat-

tern when n = 1000 (a) and as a function of the number of input neurons, n, when

storing 1000 patterns (b). Here, the perturbation size was 5. Second, comparing

the probability of spurious memories as a function of the number of stored pat-

tern when n = 1000 (c) and as a function of the number of input neurons, n, when

storing 1000 patterns (d). Parameters were h = 2, m = 100, pS = 0.1, and θ = 6,

and data show mean ± SD.
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