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Dynamic movement primitives (DMP) have been intro-
duced to humanoid robotics as a general framework for
motion generation [1, 2]. They represent a motion with
a set of differential equations. These equations can be
adapted to generate any movement trajectory. Among
the favorable properties are a simple generalization of a
represented movement to new targets (just be changing
a goal parameter) and robustness against perturbations
due to the attractor dynamics of the equations. Here, we
demonstrate a link between DMP and neurophysiology:
DMP can be motivated from convergent force fields that
are observed in the frog after spinal-cord stimulation [3].
Moreover, this derivation provides us with a new form of
DMP that generalize better towards new goals.

In the following, we describe how DMP are used to
generate motion, show the motivation and derivation from
neurophysiology, and finally, demonstrate the utility of the
new equations in a robot experiment with the Sarcos slave
arm.

Dynamic movement primitives

A dynamic movement primitive generates a motion x(t) –
e.g., of an end-effector – with a differential equation [1].
This equation is built from a damped spring around a goal
position g and a non-linear perturbing acceleration (here,
written in vector form):

v̇ = K(g − x)−Dv + F(W, θ)(g − x0) (1)
ẋ = v , (2)

where x0 is the start position of a movement, K the spring
constant, D the damping constant, and F a diagonal ma-
trix whose elements Fkk contain the parametrized non-
linear functions

Fkk =
∑

i ψi(θ)wik∑
i ψi(θ)

θ , (3)

which are normalized sums of Gaussian functions ψi(θ).
The non-linear functions depend on a phase variable θ,
which runs from 1 towards 0 according to

θ̇ = −α θ , (4)

where α is a predefined constant. The centers of ψi(θ) are
fixed and distributed between 0 and 1.

The weights wik are adapted to a desired trajectory:
first, a movement x(t) is recorded and its derivatives v(t)
and v̇(t) are computed for each time step t. Second, F(t)
is computed based on (1). Third, (4) is integrated and
θ(t) evaluated. Using these arrays, we find the weights wik

in (3) by linear regression, which can be solved efficiently.

Motivation from neurophysiology

To derive our framework for motion generation, we use
three key neurophysiological findings in frog [3]:

• After stimulating the spinal cord, a force field can
be observed by measuring forces at different leg po-
sitions. These fields are often convergent.

• The magnitude of force fields is modulated in time
by bell-shaped time pulses.

• Simultaneously stimulated force fields add up lin-
early.

These findings are realized in the model as follows. We
make a first-order approximation of a convergent field
around wi,

χi(x,v) = K(wi − x)−Dv . (5)

Each field is modulated over time with a Gaussian func-
tion centered at time ci,

ψi(t) = exp
(
−h(t− ci)2

)
. (6)

We use the summation property to obtain a more complex
field,

ϕ(x,v, t) =
∑

i ψi(t)χi(x,v)∑
i ψi(t)

. (7)

Different from the force fields in frog, here, we use acceler-
ation fields, i.e., v̇ = ϕ(x,v, t). In our robot application,
we use inverse kinematics and dynamics to compute the
joint torques.

Combining (5) with (7) results in the equations of mo-
tion

v̇ = K
(∑

i ψi(t)wi∑
i ψi(t)

− x
)
−Dv (8)

ẋ = v . (9)

To make the equation of motion converge to the goal g, we
add around g another field (5) and shift the weight from
(8) to the new field. As weight, we use the phase variable
θ, as computed by (4), and thus, the new acceleration field
becomes

v̇ = θK
(∑

i ψi(θ)wi∑
i ψi(θ)

+ x0 − x
)

+ (1− θ)K(g − x)−Dv . (10)



We inserted an extra x0 to make the equation translation
invariant. Furthermore, we changed the dependence of ψ
on t to θ. As in the original DMP, this change will allow
more flexibility since we can manipulate θ; absolute timing
cannot be easily modified. Equation (10) can be rewritten
into

v̇ = K(g − x)−Dv −K(g − x0)θ + Kf , (11)

where fk = Fkk. This equation is similar to the original
form of DMP - see (1). In the limit θ → 0, both forms
are the same. The main difference is that the non-linear
term does not scale with (g − x0). This avoids problems
that occur if g and x0 are close in any dimension (see Fig.
1). Our robot demonstration – in which the height of the
end-effector at start and end point of a movement is the
same – works with the new formulation, but not with the
original one. To learn a movement from demonstration,
we again adapt wi using the same technique as for the
original DMP.
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Fig. 1: Comparison of goal adaptation between original

(Left) and new (Right) DMP formulation for a 2-dimensional

movement in (x, y). The same demonstrated movement (solid

curve) and goals (black dots) are used for both formulations.

The dashed curves show the results of changing the goal g for

the entire movement (without changing wik).

Robot demonstration

Our robot experiment demonstrates movement reproduc-
tion and generalization to a new goal position using the
new biologically-motivated DMP formulation. The robot
places a cup between two positions on a table. The placing
movement was pre-recorded from a human demonstrator.
Only the end-effector position x(t) was recorded. After-
wards, the movement equations were adapted to reproduce
this movement by computing the appropriate wi param-
eters. Given x(t), we computed the joint torques of the
robot using the known inverse kinematics and dynamics.
The robot could reproduce the demonstrated movement
and generalize to a new goal position simply through
changing the goal position g of the placing movement
(Fig. 2).

Conclusions

We motivated the dynamic-movement-primitive frame-
work from convergent force fields observed in frog. The
neurophysiologically-motivated derivation resulted in a
new form of differential equations for motion generation
that exhibit a more robust and human-like generalization
of a represented movement to new targets. The utility of
these equations was demonstrated in robot experiments.
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Fig. 2: Placing a cup with the Sarcos slave arm. The first row shows the reproduction of a demonstrated movement. The

second row shows the generalization to a new goal position.


