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Abstract Straight-line movements have been studied
extensively in the human motor-control literature, but

little is known about how to generate curved move-

ments and how to adjust them in a dynamic environ-

ment. The present work studied, for the first time to
my knowledge, how humans adjust curved hand move-

ments to a target that switches location. Subjects (n=8)

sat in front of a drawing tablet and looked at a screen.

They moved a cursor on a curved trajectory (spiral or

oval shaped) towards a goal point. In half of the tri-
als, this goal switched 200 ms after movement onset

to either one of two alternative positions, and subjects

smoothly adjusted their movements to the new goal. To

explain this adjustment, we compared three computa-
tional models: a superposition of curved and minimum-

jerk movements (Flash and Henis, 1991), Vector Plan-

ning (Gordon et al, 1994) adapted to curved move-

ments (Rescale), and a non-linear dynamical system,

which could generate arbitrarily-curved smooth move-
ments and had a point attractor at the goal. For each

model, we predicted the trajectory adjustment to the

target switch by changing only the goal position in the

model. As result, the dynamical model could explain
the observed switch behavior significantly better than

the two alternative models (spiral: p = 0.0002 vs Flash,

p = 0.002 vs Rescale; oval: p = 0.04 vs Flash; p val-

ues obtained from Wilcoxon test on R2 values). We

conclude that generalizing arbitrary hand trajectories
to new targets may be explained by switching a sin-

gle control command, without the need to re-plan or

re-optimize the whole movement or superimpose move-

ments.
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1 Introduction

Humans can move a hand smoothly in a straight or

curved path towards a target and adjust in mid-flight
if the target moves. Despite the apparent ease of this

task, little is known about how humans generate curved

movements and adjust them to a changing environment.

Likewise, generating artificially human-like motion re-
mains a challenge, whose solution would benefit the

control of prosthetic and electrically-stimulated para-

lyzed limbs.

One approach to generate a movement trajectory is

through optimization. This approach, as a model of hu-

man motor control, has been popular for some decades
(Flash and Hogan, 1985; Stein et al, 1986; Kawato,

1996; Harris and Wolpert, 1998; Todorov and Jordan,

1998). Optimal or near optimal movements may be ob-

tained at a planning stage given a certain cost, e.g.,
minimum jerk, minimum torque change, or minimum

task variance. This optimization, however, does not ac-

count for target changes during a movement. For a new

target, the movement has to be re-optimized, but such

a step may be computationally too costly to allow a
quick adjustment in a dynamic environment.

Alternatively, we can describe a movement as being

generated by a dynamical-system equation. For exam-

ple, “next-state planning” models (Bullock and Gross-

berg, 1988; Shadmehr and Wise, 2005) do not assume
a precomputed trajectory, but update the state of the

moving limb given the current state and goal of the

movement. Next-state planners can be formulated as
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differential equations. For instance, Hoff and Arbib (1993)

reformulated the minimum jerk approach as differen-

tial equation, where a change in goal state immediately

adjusts the movement trajectory towards the new tar-

get. This model, however, is restricted to point-to-point
movements, and thus cannot describe the adjustment of

curved movements - unless the model would be embed-

ded in a complex via-point planner (Viviani and Flash,

1995).

In laboratories, most studied movements are indeed

point-to-point or straight. However, humans perform

a wide variety of curved movements in daily life. To

acknowledge this fact, we study in this article curved

movements, particularly, their adjustment to new tar-
gets.

We introduce a computational model that can gen-

erate straight and curved movements. From the model’s

perspective there is no fundamental difference between
the two. In a related model, Ijspeert et al (2002, 2003)

extended the next-state planner to arbitrary trajecto-

ries, as discussed in Shadmehr and Wise (2005). Simi-

lar to Bullock and Grossberg (1988), they worked with

differential equations, but could apply learning mecha-
nisms, such that these equations could reproduce any

desired trajectory, while guaranteeing that the move-

ment converges at the goal point. In its original form,

however, these equations cannot predict human-like ad-
justment of movements (Hoffmann et al, 2009). Here,

using also the concept of dynamical systems, we provide

new equations that overcome this limitation.

In a behavioral experiment, we study how humans

spontaneously change curved movements to end at a
new target. To model this change, we build a compu-

tational model based on dynamical systems. Starting

from the dynamics equation of the human arm and its

hypothesized controller, we make numerically-justified

approximations to arrive at a simplified model equa-
tion. In this work, we try to keep the model as simple

as possible to avoid the lack of explanatory power as-

sociated with complex models, where, e.g., parameters

could be tuned to fit any data (Alexander, 1995).

Our model has two key features: first, it can be

adapted to generate any arbitrary smooth limb move-

ment, particularly, the curved movements used in our

experiments. Second, towards the end of a movement,

the dynamics are governed by a point-attractor, which
guarantees convergence to the goal position. This model

is at the heart of current research in human motor con-

trol: psychophysical evidence suggests that trajectory

control and end-point positional control are two inde-
pendent control processes that are combined through a

smooth transition (Ghez et al, 2007; Scheidt and Ghez,

2007).

As result of our model equations, trajectories adjust

to new target positions by changing solely the position

of this goal-point attractor. We test if switching this po-

sition during a movement explains the experimentally-

observed change in movement trajectories resulting from
the target switch.

We compare our model with two alternatives: first,

a superposition of a curved and a straight, minimum-

jerk movement (Flash and Henis, 1991) and, second, an
adaptation of the Vectorial Planning hypothesis (Gor-

don et al, 1994; Krakauer et al, 2000). Both have been

suggested to simplify planning and movement genera-

tion through reduction of control parameters. We adapt

both models to reproduce the observed curved move-
ments in our experiment (when no goal switch occurred)

and to predict a movement adjustment to a new goal

position, just as a result of changing this position in the

model. We chose these models due to their simplicity:
our adaptation is straight forward, no parameter tun-

ing is necessary, and the goal position alone determines

the movement adjustment.

The first alternative model (Flash) is based upon

work that shows that human reaching trajectories re-
semble those that minimize jerk (Flash and Hogan,

1985). Jerk is the third time derivative of position; thus,

jerk is a measure of smoothness. Flash and her col-

leagues suggested that curved human movements could
be decomposed out of straight movements that mini-

mize jerk (Flash and Henis, 1991). To predict a move-

ment adjustment to a switching target, we add to the

original movement a straight movement with minimum-

jerk velocity profile. This straight movement starts from
the original goal and ends at the new goal position. The

overall movement is again curved and ends at the new

goal. If the goal does not switch, no change to the orig-

inal curved movement would occur.

According to the second model, the Vectorial Plan-
ning hypothesis, reaching is planned as a hand-centered

vector that is adapted by learning a scaling factor and

reference axis (Krakauer et al, 2000). In our adaptation

(called Rescale), we first identify the residual movement
starting from the time of goal switch. This movement

is curved and ends at the original goal. To make this

movement end at the new goal, we rotate and scale

the residual movement appropriately. For planar move-

ments, a unique rotation and scaling factor exist. As
in the Flash model, the original movement stays un-

changed without a goal switch.

For our model, the goodness of fit between the pre-

dicted target-switch behavior and the experimental data
was significantly better than for the two alternative

models. Preliminary results were published beforehand

in abstract form (Hoffmann and Schaal, 2007b,a).
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2 Methods

2.1 Subjects

Eight healthy subjects participated (right-handed, 7

males, 1 female, age 23-32 years). They were naive to

the purpose of the study. The experiment was approved
by the Institutional Review Board of the University of

Southern California. Subjects gave informed consent to

the experimental protocols prior to their participation.

2.2 Apparatus

Subjects were seated in front of a drawing tablet (Wa-

com, Intuos3, 9× 12”), held a stylus pen (Intuos3 grip

pen with polyacetal nib), and looked at a computer

screen (Dell, 24”, wide-screen, 1920 × 1200 pixels) -
see Fig. 1A. The distance between eyes and screen was

about 60 cm. The drawing area on the tablet (9× 12”)

was mapped one-to-one onto the full screen. We up-

dated the screen output at a 60 Hz rate. The experi-
ment was programmed in Matlab (MathWorks), using

the Psychophysics Toolbox extensions (Brainard, 1997;

Pelli, 1997), version 3.0.8. The software ran under Mac

OS X version 10.4.11 on a 2 × 3 GHz Dual-Core Intel

Xeon machine.

2.3 Experimental protocol

The experiment consists of two blocks, one for each in-

structed curve, first, spiral, then, oval (Fig. 1B and C).
A block had two phases. In the first, subjects practiced

tracking a presented curve, which was displayed on the

screen. Each curve ended at the center of the screen. Vi-

sual feedback was given about the pen’s position (gray

dot, 6 pixels diameter). In this phase, subjects tracked
the curve 20 times. In the second phase, only start and

end point of the curve were shown. These points were

displayed on the screen as white (start) and green (goal)

discs (10 pixels diameter). Subjects were instructed to
move the pen quickly from start to goal along a curve

resembling the previously trained one. If they moved

too slowly, they were instructed to move faster. Sub-

jects were told that they do not need to reproduce ex-

actly the observed curve, instead should move the pen
comfortably. Without this instruction, we found in pilot

experiments that some subjects tried to reproduce spe-

cific geometric features, e.g., vertical alignments, from

memory. Subjects were told that the target position
may change and that they should end their movement

at the new goal (green disc). In half of the trials, cho-

sen randomly, 200 ms after movement onset, the goal

switched to a different position. The new goal position

was pseudo-randomly chosen from two alternative lo-

cations (150 pixels below the center, or 150 pixels from

the center to the right, Fig. 1D). Subjects performed

40 trials to the original goal and 20 trials to each new
goal.

Before the actual experiment started, for each block,

subjects did a test run with only 10% of the trials in one
block. This test run served only to familiarize subjects

with the task and setup; we did not record data from

this test.

2.4 Reaction time experiment

Between first and second block, as a control experiment,

we measured the time lag for initiating a new movement
for each subject. This experiment was designed to re-

semble the main experiment while allowing an easily

detectable reaction time. Subjects sat in front of the

drawing tablet with a pen and looked at the screen.
A green disc (10 pixels diameter) was presented at the

center of the screen, and subjects were asked to rest

with the pen’s cursor (gray dot as above) on this disc.

With probability 0.5, 400 ms after the pen touched the

tablet, the green disc jumped to a different position.
This position was either 150 pixel above or below the

center (displacements in y-direction, each with proba-

bility 0.5). Subjects were asked to move with the pen

as quickly as possible to this new position. In total,
subjects did 80 reaction-time trials - including trials in

which the green disc did not jump. As above, before the

actual experiment, subjects did a test run consisting of

4 trials.

2.5 Notation

In the following, we introduce the computational model.
We write vectors as bold small letters and matrices as

bold capital letters. Throughout the paper, x is the

hand position on the tablet; the position’s dependence

on time t is written as x(t). Its time derivative - hand
velocity - is ẋ, and the hand acceleration is ẍ.

2.6 Mathematical modeling

The dynamics equation for a multi-joint manipulator,

like the human arm, can be generally written in joint-

angle space θ as

I(θ)θ̈ + c(θ, θ̇) = τ (θ, θ̇, t) , (1)
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where I is the inertia matrix, c contains the Coriolis and

centrifugal forces, and τ are the torques produced by a

controller including direct and feedback signals (Spong

and Vidyasagar, 1989). Here, we ignore gravity since the

hand movements are in a plane, and, for simplicity, we
ignore friction (Section 3 shows also results for modeling

with friction - its effect was small). Apart from friction,

the hand is moving freely; thus, no additional external

forces are present.

In our model, we are interested in the position of the

hand, x(t). Instead of mapping hand position onto joint

angles, the dynamics equation can be directly expressed

in operational space, i.e., the state variables are hand

position, x, and velocity, ẋ (Khatib, 1987),

M(x)ẍ+ µ(x, ẋ) = f(x, ẋ, t) . (2)

The variables M, µ, and f are defined correspondingly
to I, c, and τ . For non-redundant systems, a functional

relationship exists between these variables (Khatib, 1987).

In our experiment, the arm is close to non-redundant,

since the lower arm operates in a plane and subjects did
not show noticeable upper body or wrist movements.

To approximate the control function f(x, ẋ, t), we

use the same argument as Shadmehr and Mussa-Ivaldi

(1994). The human controller is assumed to incorporate
an internal model fI(x, ẋ, t) of the arm dynamics,

fI = M̂(x)ẍ∗(t) + µ̂(x, ẋ) . (3)

The hatted variables denote estimates of the respec-

tive variables, and ẍ∗ is the desired acceleration. Since

the internal model likely deviates from the real dynam-

ics, the solution x(t) may diverge from a desired path,

x∗(t). To stabilize our controller, we can add a feedback
component,

f = fI +K(x∗(t)− x) +D(ẋ∗(t)− ẋ) , (4)

where the matrices K and D are the feedback gains

(Slotine and Li, 1991). These gains directly relate to

the stiffness and viscosity matrices measured at the

hand (Shadmehr and Mussa-Ivaldi, 1994; Tsuji et al,
1995). To simplify our resulting dynamic equation, we

approximate M(x) = const and µ(x, ẋ) = 0. We jus-

tify these approximations based on a two-link arm sim-

ulation, which uses analytic expressions for M(x) and

µ(x, ẋ) (Katayama and Kawato, 1993; Khatib, 1987)
and realistic arm parameters (Shadmehr and Mussa-

Ivaldi, 1994). One important component in our approx-

imations is the limited range of the hand trajectories.

In the simulation, we take typical movements measured
during our experiments (Fig. 2).

As result of the simulation, the M matrix varied

only little: the average normalized standard deviation

(SD) of a matrix entry around its mean value was 7.5%

for the spiral shape and 7.7% for oval. Furthermore,

the Coriolis and centrifugal term µ was small compared

to the inertia force Mẍ: the ratio of the average force

magnitude between µ and Mẍ was 9.6% for spiral and
8.4% for oval.

Given these approximations, our dynamical system

is given as

Mẍ = M̂ẍ∗(t) +K(x∗(t)− x) +D(ẋ∗(t)− ẋ) , (5)

We combine all time-varying quantities that do not di-

rectly depend on state in one function ξ(t) = x∗(t) +

K−1Dẋ∗(t) + K−1M̂ẍ∗(t), simplifying the dynamics

equation to

ẍ = Ka (ξ(t)− x)−Daẋ , (6)

using Ka = M−1K and Da = M−1D.

This simplified dynamical system is the first step
for our final equation of motion. To make the equation

converge towards a given goal position g and simulta-

neously add the ability to adjust the motion x(t) to a

new goal g, we assume a controller that transitions to-
wards producing effectively a convergent field around

the goal,

ẍg = Ka(g − x)−Daẋ ; (7)

this equation is the same as for a spring-damper sys-
tem centered at the goal g. In behavioral experiments,

evidence for a transition between trajectory and end-

point control has been found (Ghez et al, 2007; Scheidt

and Ghez, 2007). To realize the transition, we gradu-
ally switch from (6) to (7) during the movement, using

a time-varying weight γ(t) for (7); thus, our final equa-

tion of motion is given as

ẍ = (1− γ)Ka (ξ(t)− x) + γKa (g− x)−Daẋ , (8)

where the transition function γ(t) changes from γ(0) =

0 to γ = 1 at the end of a movement.

For γ = 1, our motion x(t) is guaranteed to converge

to g. We extracted the transition function γ(t) from
data (Section 2.7).

To adapt the movement to a new goal, we may

change the variable g at any time during the movement.

Here, we experimentally determined the switch time.

In a related robotics study, we showed smooth move-
ment adjustment to new goals if g is changed at the

beginning of a movement (Hoffmann et al, 2009; Pastor

et al, 2009). This model feature agrees with Ghez and

Scheidt’s interpretation that trajectory and positional
control always operate together and not purely react to

unexpected target changes (Ghez et al, 2007; Scheidt

and Ghez, 2007).
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2.7 Data analysis

During the experiment, we recorded a subject’s drawing

curves (280 in total, including the reaction-time exper-

iment). These curves are given as time series x(t) of

tablet coordinates at a sampling rate of 60 Hz.

For each curve type, we split the data into the three
conditions: original goal, goal-switch position A, and

goal-switch position B (Fig. 1D). For the each of these

conditions, each subject, and each curve type, a mean

curve was computed from the recorded curves.
The recorded raw curves were smoothed with a zero-

lag fifth-order Butterworth low-pass filter, with cutoff

frequency of 6Hz. First, we describe the computation

of the mean curves and, then, the computation of the

transition functions (see Section 2.6). Before comput-
ing the mean, all curves were scaled and translated in

time to correct for variations in speed. For each curve,

we determined the time when the tangential velocity

first exceeded a threshold (30% of the curve’s maximum
tangential velocity) and also the time when the tangen-

tial velocity for the first time dropped again below this

threshold. Each curve was scaled and translated such

that these two time points matched their average values

over all curves of the same type and switch condition.
Scaling a trajectory changes its sampling rate; thus, we

re-sampled each trajectory at 240 Hz by interpolating

between sample points (cubic interpolation using func-

tion interp1, Matlab, MathWorks). A higher sampling
rate than the original 60 Hz was chosen to improve

accuracy of the integration of the differential equation

(Section 2.6). Finally, the mean trajectory was com-

puted as the point-wise average over the pre-processed

curves. The resulting mean curve was cut-off at the time
when the velocity dropped below 0.01 cm/sec (defining

the movement duration T ).

To compute the transition function γ(t) from data,

we compare a trajectory x1(t) towards the original goal
g1 with a trajectory x2(t) towards a switched goal g2.

Based on the difference between the two, we can com-

pute γ(t) even without knowing ξ(t) by assuming that

both γ(t) and ξ(t) are independent of the goal g. Using

(8), we obtain for the difference ẍ1 − ẍ2

ẍ1− ẍ2 = −Ka(x1−x2)−Da(ẋ1− ẋ2)+γKa(g1−g2) .

(9)

The above equation has to hold for each time point t,

making this equation a matrix equality. Since the equal-

ity won’t be exactly fullfilled, due to model uncertainty

and noise, we derive γ(t) as the least-squared-error so-
lution of (9),

γ(t) =
(Ka∆g)T (Ka∆x(t) +Da∆̇x(t) + ∆̈x(t))

(Ka∆g)T (Ka∆g)
, (10)

where ∆x = x1 − x2 and ∆g = g1 − g2 (Hastie et al,

2003). We computed γ(t) using the smoothed raw data

(see above) for each consecutive trajectory pair consist-

ing of one movement to the original goal and one move-

ment to a different goal. We used consecutive move-
ments instead of mean trajectories to limit the effect

of a drifting ξ(t) during the experiment - subjects may

not intend to produce exactly the same movement for

each trial. For each curve type and goal (A or B), we
averaged γ(t) across all observed trajectory pairs and

subjects. To the mean γ(t), we fitted an exponential

function, γ(t) = 1 − exp(−(t − tS)/τ) for t ≥ tS and

γ(t) = 0 for t < tS , where the switch time tS and the

relaxation time τ were the two parameters determined
in the fitting process.

As shown in the Results, the experimentally derived

function γ(t) varied between goals and it is apparently

sensitive with respect to speed variations along a tra-

jectory. Thus, the assumption preceding Equation (9)

is violated, and we will observe an artifact in our es-
timation of γ(t). To demonstrate this artifact on γ(t),

we simulated for each subject the target switch accord-

ing to Equation (8) and using γ(t) = 1 − exp(−(t −

tS)/τ), which does not depend on goal and speed varia-
tions. On the predicted trajectory, we manipulated the

speed by adding to each time step ∆t in the interval

[0.2s;0.2s+D] the value ∆t(2 cos(2π(t − 0.2s)/D)− 2),

where 0.2s is the switch time on screen, and D = 1.2s.

This manipulation has the effect that within this in-
terval, the movement is first slower then faster; while

the overall movement duration remains the same. For

the resulting trajectory, we computed γ(t) according to

Equation (10) and then compared this gamma to the
one estimated from data.

2.8 Learning of movements

In this section, we explain how we extracted ξ(t) from

data. To compute ξ(t) for each subject and curve type,

we used the average trajectories to the original goal

(Section 2.7).

We set x(t) to the average trajectory; from this tra-

jectory, ẋ(t) and ẍ(t) are computed through numeric
differentiation. Finally, we solve (8) for ξ(t),

ξ(t) =
K−1

a (ẍ(t) +Daẋ(t)) + x(t)− γ(t)g

1− γ(t)
, (11)

where g is the location of the original goal. These data

pairs (t, ξ) can be used by any non-linear supervised
learning algorithm to obtain a functional relationship

between time and ξ. Here, we chose linear regression us-

ing Gaussian basis functions, as described in (Hoffmann
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et al, 2009). We used 25 basis functions, whose param-

eters where the same as in (Hoffmann et al, 2009). This

number of basis functions was sufficient such that our

results did not differ between using the learned ξ(t) or

the data pairs (ξ, t). Note, since we use linear regres-
sion, the solution is analytical and a global optimum

(Hastie et al, 2003). After learning ξ(t), the generated

trajectories from the dynamical system (Equation 8)

matched the corresponding experimental mean curves
to the original target (spiral: averageR2 = 0.9997, oval:

average R2 = 0.9995).

2.9 Choice of model parameters

We took the values of the hand’s stiffness, viscosity,

and inertia matrices (K, D, and M) from the litera-

ture (Tsuji et al, 1995). In Tsuji et al’s experiment,

subjects held a robot manipulandum. They were asked
to relax their arm and keep it at the fixed position. At

the same time, the manipulandum exerted a perturbing

force and the resulting forces on the handle were mea-

sured; arm and robot were occluded from the subject’s
view. Tsuji et al reported the values of the above ma-

trices for each subject and arm posture. We used the

values for “hand location 1” and for the setup in which

subjects grasped the manipulandum handle instead of

being attached to it. These conditions were closest to
the conditions in our experiment. We averaged stiff-

ness, viscosity, and inertia matrices across all subjects

reported in that work. To keep our mathematical model

analytically tractable, we used constant values for K,
D, and M. In humans, however, these matrices depend

on posture and velocity of the arm (Gomi and Kawato,

1996; Gribble et al, 1998). We justify our choice given

the small range of the movement (Fig. 2). The relevant

range is even smaller than the whole movement range:
the time-variation of K, D, and M will affect our re-

sulting movement only in the final movement phase; in

the beginning, for γ(t) << 1, any variation is compen-

sated by learning an appropriate ξ(t), Equation (11).
To estimate the effect of inaccuracies in K and D on

our model prediction, we did a sensitivity analysis for

these matrices (Section 3.4). In summary, by choosing

model parameters from data or literature, we omit tun-

ing a single parameter in our mathematical model to
compute the adjustment to the switching target.

2.10 Alternative models

The predictions of our computational model are com-

pared to two alternatives, which we refer to as “Flash”

and “Rescale” model.

2.10.1 Flash model

The Flash model is based upon work that suggests

that curved human movements are decomposed out of

straight movements that minimize a jerk cost (Flash

and Hogan, 1985; Flash and Henis, 1991). The jerk cost,

J , is taken as the sum of squared jerk, J =
∫
||d3x/dt3||2dt.

We refer to a movement that minimizes this jerk cost

as a minimum-jerk movement.

Here, we use this concept of composition for adjust-

ing a curved movement to a new target. A movement is
adjusted to a new goal by superimposing onto the orig-

inal movement a minimum-jerk movement between the

old and new goal (Flash and Henis, 1991). We added

the position vector of this additional movement to the

mean trajectory towards the original goal. As starting
time of the additional movement, we used the same

switch time, tS , as for the dynamical-systems model.

The minimum-jerk movement ended at the same time

as the original movement, t = T .

2.10.2 Rescale model

The Rescale model, assumes a vectorial representation
of a movement in extrinsic space in a coordinate frame

centered at the hand (Gordon et al, 1994; Krakauer

et al, 2000). Movements to different goals are scaled

and rotated relative to a vector from hand to goal posi-
tion. Such planning was consistent with straight move-

ments (Gordon et al, 1994; Krakauer et al, 2000). Here,

we adapted this model for curved movements. At the

switch time tS - same time as for the other models - we

scaled and rotated the remaining mean trajectory be-
tween the hand position at the current position, xS , and

the original goal position, g, such that the end-point

of the transformed movement overlapped with the new

goal, gN . For a movement in two-dimensional space,
such a transformation is unique. Let x(t) be the nom-

inal movement to the original goal. As new movement

xN (t), we obtain xN (t) = αR(x(t) − xS) + xS , where

α = ||gN − xS ||/||g−xS ||, and R is the rotational ma-

trix [cos(φ) − sin(φ); sin(φ) cos(φ)] with φ being the
angle between the vectors g − xS and gN − xS (clock-

wise rotation from g to gN ).

2.11 Evaluation of model predictions

The mean curves for the target-switch condition were

compared with the model predictions. For each com-

putational model, we computed the coefficient of de-
termination, R2, between an experimental mean curve

and the corresponding model prediction. In this com-

putation, we used only the part of the trajectory that
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followed after we switched the goal g in the model, since

before this time, there is no difference between models.

Explicitly, R2 was computed as follows. Let xM (t) be

the model trajectory and xE(t) the experimental tra-

jectory; then,

R2 = 1−

∑T

t=tS
||xM (t)− xE(t)||

2

∑T

t=tS
||xE(t)− x̄E ||2

, (12)

where tS is the time of goal switch in the model and

x̄E is the mean of xE(t) in the interval [tS ;T ]. We com-

puted mean values of R2 by averaging across subjects

and the two goal positions, but not across curve types.

To evaluate significant differences of model predic-

tions xM (t) between models, we performed a Wilcoxon
test (Wilcoxon, 1945; Siegel, 1956) on the R2 values be-

tween models. This test is an alternative to the paired

t-test. The Wilcoxon test, however, does not require

Gaussian-distributed measurements. The coefficient of
determination is generally non-Gaussian distributed.

2.12 Analysis of reaction-time experiment

The reaction times were computed based on the recorded

curves x(t) from the reaction-time experiment. At the

beginning of a trial, subjects hold the pen still; thus,

x(t) was almost constant. We computed the first time
point tJ when the acceleration (computed in discrete

form as y(t+2)− 2y(t+1)+ y(t) in unit “pixels”, with

time-step size 1, where y is the vertical coordinate on

screen - along the coronal axis on the tablet) was above

a threshold (2 pixels in screen coordinates). As reaction
time tR, we chose tJ minus the time when the target

disc moved on screen (Section 2.4). For each subject,

we computed the average reaction time across trials.

We rejected outliers, reaction times that were 5 stan-
dard deviations away from the mean, which happened

to be the trials in which subjects moved the pen pre-

maturely. Out of a total of 640 trials, only 6 trials were

rejected.

3 Results

Figure 4 shows the raw trajectories for a sample sub-

ject. All subjects could smoothly change their move-
ments to a new target. To draw a curve with the pen,

subjects, typically, moved the whole hand (Fig. 3) with-

out moving the fingers; moving the hand matches our

assumption in Section 2.6. Only in one subject, we ob-
served a mix of hand and finger movements. The hand

movements were carried out speedily: the duration was

1.5 s for the entire curve (Fig. 4).

The following five sections show the experimentally-

derived transition function from trajectory to goal-point

control, the result of the reaction-time experiment, the

accuracy of model predictions for a switching target,

the model sensitivity towards changes in the stiffness
and viscosity matrices, and the effects of introducing

friction in our model.

3.1 Transition function

We extracted the transition function γ(t) from the tra-

jectory data (see Section 2.7). The resulting averages

for both curve types and goal positions are displayed

in Fig. 5A and B. As transition function for our model,
we used only a single function γ(t) for all subjects and

conditions. In the following, we show how we chose this

function and explain the discrepancies of that function

to the observation in Fig. 5A.

The transition function that was computed from the
data for the oval curve and goal A had the lowest vari-

ance and complexity; this function is consistent with

a smooth transition towards an attractive field around

the goal. The transition resembled an exponential decay
(Fig. 5D). A fit to an exponential function (Section 2.7)

gave the time tS when the transition started (relative

to the target switch on screen) and the relaxation time

τ : tS = 258± 4 ms and τ = 274± 5 ms (errors are SE,

χ2 = 0.076, n = 99 data points). We used this expo-
nential transition function for the following prediction

of target switching (Section 3.3).

For the spiral curve, however, the transition differed

from the exponential function (Fig. 5A). To explain this
difference, we did another simulation. On the spiral,

three subjects showed a slight decrease in velocity after

the target switched. This slow-down may result from

subjects getting conservative because the target jump

introduces an uncertainty. Thus, we modeled the effect
of a momentary slow-down and a subsequent speed-up

on the measured transition function (see Methods, Sec-

tion 2.7). The hereby computed functions resembled the

corresponding measured functions for the spiral curve
(Figure 5C).

The experimentally obtained transition function also

allows a comparison between models. For both Flash

and Rescale model, we can predict what the transition

function would appear to be if the data were generated
according to these models (Fig. 5D). The predictions

for both Flash and Rescale were inconsistent with the

experimental data.
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3.2 Reaction time

The time tS obtained from the fit of the transition func-

tion was close to the result from our reaction time ex-

periment (Fig. 5). The latter gave an average reaction

time of 284± 14 ms (mean ± SE) relative to the target

switch on screen (Table 1). Figure 6 shows raw data
from this experiment.

Subject (ID) Reaction time (ms)

1 247± 30
2 258± 29
3 287± 33
4 299± 36
5 258± 28
6 374± 53
7 279± 43
8 269± 35

Table 1 Result of reaction-time experiment. Values are mean ±

SD.

For the further predictions of the target-switching
behavior, we used the exponential transition function

with parameters tS and τ as obtained from the fit to

the data (see above). First, the mean trajectories to the

original goal (Fig. 4) were used to compute the function

ξ(t) for each subject and curve type. Finally, given ξ(t)
and γ(t), we predict the trajectory change as result of

setting the parameter g to a new goal position.

3.3 Target-switch predictions

The resulting predicted trajectories from our model re-

sembled the experimentally-observed mean curves to

the new goals (shown for a sample subject in Fig. 7).

This match was observed for both tested curve types

and both directions of goal switch and was qualitatively
better than for the Flash and Rescale model.

Averaged across all eight participating subjects and

both goal-switch directions, the goodness of fit, R2, for

our model was significantly better than for the two
tested alternative models: Flash (p = 0.0002 on spi-

ral and p = 0.002 on oval shape, Wilcoxon test between

models, n = 16) and Rescale (p = 0.04 on spiral, but

p = 0.13 on oval, Wilcoxon test, n = 16) - see Fig. 8.

For both spiral and oval curves, the average R2 values
for our model were above 0.84; the Flash model showed

poor prediction on the oval (average R2 = 0.71), and

the Rescale model showed poor prediction on the spiral

(average R2 = 0.53).
We observed a difference in the accuracy of our

model prediction between the two goal-switch direc-

tions (spiral: R2 = 0.93 ± 0.01 for goal A and R2 =

0.88± 0.03 for goal B; oval: R2 = 0.91± 0.04 for goal A

and R2 = 0.77±0.06 for goal B; values are means ± SE,

n=8). Across all subjects and curve types, this differ-

ence was significant (p = 0.01, Wilcoxon test between

goal positions, n = 16).

3.4 Sensitivity about model parameters

We tested the sensitivity of our model predictions with

respect to changes in the stiffness and viscosity matri-

ces, K and D. Varying K by ± 20 % changed the aver-

age R2 by maximally 3%; varying D by ±20 % changed

the average R2 by maximally 1 %.

3.5 Effect of friction

We tested the effect of friction. For the pen nib, we as-

sume a typical coefficient of friction for polyacetal (Del-

rin): µ = 0.21, and for the weight on the pen, we use

a typical weight of the lower arm, m = 1.52 kg (Shad-
mehr and Mussa-Ivaldi, 1994). We re-ran the analysis,

adding the dry-friction term −mµẋ/||ẋ|| to Equation

(8). For predicting the movement change to a new goal,

friction had only a small effect. The coefficient of de-

termination changed by only a small amount, spiral:
R2 = 0.90 ± 0.02 and oval: R2 = 0.81 ± 0.07 (values

are means ± SE, n=16; compare with R2 = 0.91 and

R2 = 0.84 , Fig. 8).

4 Discussion

We studied how humans adjust curved hand movements

to a switching target. To our knowledge, this experi-
ment is the first that studies this adjustment for curved

movements. The results showed that the change in move-

ment may be explained by a switch of a single con-

trol command (goal position), without the need to re-
optimize the movement or superimpose optimal paths.

Our model predictions were significantly better than

for a superposition of minimum-jerk movements (Flash

and Henis, 1991) and better than a geometric model

that rescales and rotates the remaining part of a de-
sired trajectory. The latter is a realization of the Vecto-

rial Planning hypothesis (Gordon et al, 1994; Krakauer

et al, 2000).

Our model used an approximation of limb dynam-

ics. The model assumed a controller that can, first,

make the hand go along a curved trajectory and, then,

transition towards producing a convergent field for the

1 www.plasticsintl.com/datasheets/Delrin 150.pdf
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hand around the target position. This transition is gov-

erned by a continuously changing function, which we

extracted from data. The extracted start point of this

transition was close to the subjects’ reaction time mea-

sured in a separate experiment. Here, in all models,
the goal position changed instantaneously (close to the

measured reaction time). For the Rescale model, this

change leads to a discontinuous change in velocity. Thus,

this model will improve if adding a mechanism that
makes the goal change smoothly from old to new po-

sition. To keep the models simple, however, such an

addition was omitted in the present analysis.

Each of the alternative models failed on one of the

curve types: the Rescale model had a small R2 on the

spiral and the Flash model a small R2 on the oval

curve. The Rescale model is very sensitive to large goal

changes relative to the residual distance-to-go. This sit-
uation was more prevalent on the spiral curve, where

the switch to goal position A was almost twice the dis-

tance between hand position at switch time and orig-

inal goal (Fig. 7). Thus, the Rescale model scaled up
inappropriately the remaining part of the movement.

The Flash model failed on the oval curve. Here, the

measured transition function resembled an exponential

decay. The high initial speed of such a decay is in con-

trast with the gradual acceleration at the beginning of
a minimum-jerk movement (Fig. 5D).

In the following two sections, we will discuss the

relation of our model to neurophysiology and limits of
the model.

4.1 Relation to neurophysiology

Our model and experimental results are closely linked
to the current active debate on human motor control.

Specifically, they concern the discussions about the com-

bination of equilibrium-point and internal-model con-

trol, relevance of convergent force fields, movement rep-
resentation in the motor cortex, cause of muscle syner-

gies, and use of optimal control.

In the model, we transitioned from trajectory to

movement-end-point control. This difference between
trajectory and end-point control is supported by visuo-

motor-adaptation experiments showing a lack of trans-

fer between adaptation to trajectory manipulation and

adaptation to end-point manipulation (Ghez et al, 2007;
Scheidt and Ghez, 2007).

At the beginning of a movement, an internal model

may be used to keep the hand along a desired path, as
has been discussed in many works, e.g., (Shadmehr and

Mussa-Ivaldi, 1994; Gomi and Kawato, 1996; Popescu

and Rymer, 2000; Hinder and Milner, 2003). At the

end of a movement, the goal (or target) acts as an

equilibrium point, a feature that is shared with the

equilibrium-point hypothesis (Feldman, 1986). The cor-

responding convergent force field2 may arise from the

following sources:

1. The muscle-tendon apparatus has spring-like char-

acteristics (Zajac et al, 1989).

2. Muscle spindles provide feedback of muscle exten-

sion. The corresponding feedback loop on the spinal-

cord level may act to drive the muscle back to a
desired state (Loeb et al, 1999).

3. The shape of the force field depends on the biome-

chanical properties of the arm, e.g., its geometry

(Shadmehr and Wise, 2005).

Generally, this force field will be non-linear. In our

model, we used a linear term. This term can be inter-

preted as a first-order approximation, computed through

Taylor expansion of the non-linear field.

The role of the visual feedback is to set the posi-

tion of the force field (goal variable g). To obtain this
position, the brain has to transform the target from

eye-centered coordinates into arm posture: such trans-

formations have been actively researched in neurophys-

iology (Snyder, 2000).

Convergent force fields have been also discussed in
the context of frog-leg force and movement control (Bizzi

et al, 1991; Giszter et al, 1993; Mussa-Ivaldi and Bizzi,

2000). This work has greatly influenced our concept of

modularity in control. A force field can be observed at
the foot as a result of micro-stimulating the spinal cord

at specific locations. If stimulating simultaneously two

locations, a new field can be observed that resembles

the linear combination of the two fields that would re-

sult from stimulating each single site individually. Thus,
the individual fields could form building blocks for more

complex dynamics. Interestingly, we also combine lin-

early two fields: a trajectory generating field (Equation

6) and a convergent field around the target (Equation
7). How far the insights from frog-leg force fields extend

to the human is still an open question though.

Being able to explain movement adjustment with a

single parameter implies a reduction in control param-

eters compared to the complexity of a movement. This
observation is in agreement with recent findings on M1

motor neurons. Recent experiments indicate that sin-

gle neurons encode complex movement fragments (Hat-

sopoulos et al, 2007), which reflect the spatiotemporal

complexity of the musculoskeletal system (Pruszynski
et al, 2010). In agreement with this work, our model

2 In our model, we used an acceleration field, but these two field
types are closely linked through the multiplication of an inertia
term.



10

links the movement representation directly to the arm

dynamics, instead of using a higher-level abstraction, as

originally assumed for a next-state planner (Shadmehr

and Wise, 2005). In addition, related to our work, a

recent computational model showed that the compu-
tation by spinal cord and spindle feedback loops may

account for many low-level movement phenomena, like,

e.g., perturbance rejection (Raphael et al, 2010). Thus,

the top down commands may be fairly simple.
If the number of control parameters is small com-

pared to the number of muscles involved, correlations

between muscles will be observed. For human move-

ment, such correlation has been indeed found and termed

“synergies” (d’Avella et al, 2003; Hart and Giszter,
2004; Ting and Macpherson, 2005; Bizzi et al, 2008).

The level at which synergies are formed is still debated.

For example, a recent study suggested flexible grouping

of muscles during force production (Kutch et al, 2008).
Different from our dynamical model, a popular hy-

pothesis for human motor control suggests movement

generation between two targets as result of an off-line

optimization process (Flash and Hogan, 1985; Stein et al,

1986; Kawato, 1996; Harris and Wolpert, 1998; Todorov
and Jordan, 1998). Unclear, however, remains how such

optimization results in movements that are flexible to

adjust to changes in the environment, like changing

movement targets. Recomputing the optimization to
adjust for a new target appears computationally too

expensive to account for the fast adjustments found in

human movements.

An alternative to the above cited optimization meth-

ods is optimal feedback control (OFC) (Maybeck, 1979;
Todorov and Jordan, 2002), which computes a series of

feedback gains. Thus, OFC could cope with a chang-

ing target, if this target appears in the feedback error.

However, OFC by itself cannot explain the generation
of curved trajectories, as studied in the present work.

A fundamental difference between OFC and the present

model is that the latter includes a kinematic representa-

tion of a curved movement. Our experiment does indeed

show that subjects reproduce curve movements from
instruction, suggesting a kinematic representation. In

contrast, OFC as a model for human movements tries to

explain their generation without any kinematic repre-

sentation (Todorov and Jordan, 2002; Liu and Todorov,
2007).

4.2 Limits on our model

Our model predictions matched the behavioral data
better then the two alternative tested models. How-

ever, this article does not mean to imply that the sim-

ple model in Equation (8) is a principal or accurate

model of human function; rather, the equation should

be viewed as an approximation of a more complex dy-

namical system, which however shares the same fea-

tures as our model, namely the transition towards a

convergent field around the goal, and just by moving
this field, the whole trajectory can be automatically

adjusted.

We justified our approximations with a simulation

of the non-linear dynamics: variations of around 7-10

% were ignored. Moreover, inaccuracies in model pa-

rameters (stiffness and viscosity) as well as friction had

only a small effect on our model prediction. The ignored
variations in dynamics, however, could be responsible

for the small mismatch between between model predic-

tion and experimental data (Fig. 7).

Part of our model is a function that regulates the

transition of the dynamics towards a field converging at

the goal. The estimation of this transition function from

data is sensitive to trial-by-trial variations of a move-
ment (see Section 2.7). Thus, our estimation contains

artifacts (here, presumably, deviations from an expo-

nential function). For the spiral movement, we could

show that speed variations may explain these artifacts.

For the transition function, we can further explain

the difference in artifact between the two goal positions

A and B. At the time of goal switch, the hand moves

approximately orthogonal to the goal change towards
position A. Thus, the speed changes are also orthog-

onal to the goal change. According to Equation (10),

these changes are projected onto the goal change direc-

tion. Therefore, they largely vanish and have a minor
effect on the estimation of γ from data. In contrast, for

goal position B, the velocity changes are in the same

direction as the goal change, and the projection does

not cancel those changes. Consistent with this analysis,

for both oval and spiral movements, the deviations from
the exponential transition function were larger for goal

position B (Fig. 5). In addition, the predicted trajecto-

ries fitted the experimental data better for goal A than

for goal B (Results, Target-switch predictions), again
consistent with the above argument.

A further limitation of our dynamics approxima-

tion is the distance of goal change. We showed move-
ment adjustments for only a small change in goal po-

sition (about 3 cm). Indeed for larger changes (about

10 cm), pilot experiments showed larger deviations be-

tween model prediction and human movement. Possi-
bly, larger changes require a different recruitment of

control commands in humans. Moreover, our model ap-

proximation will become more inaccurate with increas-

ing range of motion.

As a future step, it would be interesting to simulate

a more detailed musculosceletal model, e.g., using Rah-
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man Davoodi’s Musculoskeletal Modeling in Simulink

software (Biomedical Engineering, University of South-

ern California). A possible compound of such a step is

that the gained precision might be irrelevant given the

large variability of human motion - for a single subject
as well as between subjects.

5 Conclusion

In our experiment, humans smoothly adjusted curved

movements to new targets. The resulting motion was

inconsistent with two models for this adjustment: (1)

superimposing a new minimum-jerk movement on top

of the original movement and (2) rescaling and rotating
the movement to end at the new goal.

As possible alternative, we showed that movements

could be generated with a dynamical system based on

limb and controller dynamics, and movements could be
adjusted to a new target just by changing a goal pa-

rameter in the model. These results suggest trajectory

generation using only a few control parameters.

We already applied the insight from this experiment

about how to adjust a trajectory with a single goal
parameter to the control of a robotic arm (Hoffmann

et al, 2009). There, we could make the robot reproduce

a demonstrated trajectory, like placing a cup on a table,

and then generalize this trajectory to new target posi-

tions, again, just by changing the goal variable. Such a
mechanism could benefit the control of prosthetic limbs

and electrically-stimulated paralyzed limbs. A challenge

of prosthetic control, e.g, is the limited number of con-

trol parameters that can be extracted from the patient
- a challenge that we addressed with this work.
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Fig. 1 Experimental setup. A: Subjects sit at a graphics tablet and look at a screen. B: Screen display of spiral curve for the tracking
phase shown with start point (circle) and end point (disc). C: Display of oval curve. D: Locations on screen of the original goal (black
disc) and the new goal positions (diamonds).

Fig. 2 Simulated two-link arm shown in typical initial posture together with typical curve movements (red): (A) spiral and (B) oval.
Link lengths and curves are true to scale.

Fig. 3 Movie sequence for typical spiral (A) and oval (B) movements. For clarification, start and goal position are shown overlaid as
white and green discs. The images are a top-down view of the digitizing tablet.

Fig. 4 Results of goal-switching experiment, shown for subject 2. On the left of each block are the pen-position traces on the tablet:
recorded raw curves are shown in light colors (yellow for original goal and cyan for goal switch); dark colors are for mean trajectories
(red for original goal and dashed blue for goal switch). On the right are the tangential velocity profiles corresponding to the mean
trajectories on the left. The time of goal-switch is marked by a dashed vertical line. A, B, C, and D show different curves and
target-switch positions.

Fig. 5 Transition functions, γ(t), extracted from data for each curve type, spiral (A) and oval (B), and goal position. Curves show
mean ± SE. (C) Simulated transition functions assuming speed variations (see text) for the spiral curve and both goal positions. (D)
Transition function for the oval curve, goal A, compared to model predictions. For our model (DYN), the curve is a fit to the data.
Curves show mean ± SE. The transition function for the Flash model can be computed analytically and, thus, does not show errors.
For comparison, the result from the reaction-time experiment is shown (arrow).

Fig. 6 Result of reaction-time experiment, shown for subject 5. A: Raw curves (gray) recorded from subject. All 40 trials with
switching target are shown. The time of goal-switch on screen was set to 0. The arrow points at the computed mean value (258 ms)
for this subject. B: Histogram of reaction times as obtained from single trials.

Fig. 7 Comparison of model predictions with experiment. From the experiment, the average curves to the original goal (red) and to
the new goal (blue) are shown. Our dynamical-systems model, DYN (green) is compared to the Flash model (gray) and Rescale model
(black). Panels A and B show the results for the spiral movements and panel C and D for the oval movements (one panel each for
each new goal position).

Fig. 8 Goodness of fit for target-switch prediction (A for spiral and B for oval curve). R2 values are compared between predictions
for all three tested models. DYN refers to our dynamical-system model. Bars show means ± SE, n = 16.
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