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Abstract

Many complex systems that produce cascading events are thought to be self-
organized critical (SOC). So far, models of SOC treat a cascade as a spread
strictly between adjacent nodes, while in many real systems, e.g., the power-
grid or the brain, this restriction is invalid. Here, we demonstrate for the
first time SOC behavior in a model for which the spread is non-contiguous,
i.e., not restricted to neighboring nodes. We illustrate our results in a circuit
model obeying Kirchhoff’s laws and demonstrate mitigation strategies that
avoid large-scale cascades. We found that the following two unconventional
strategies break SOC: (1) upgrade lines at random in addition to fixing fail-
ures and (2) upgrade a tripped line with one that has a random trip threshold.
These results enhance our understanding about the conditions under which
SOC can occur and may lead to insights that help avoid catastrophic events
in real-world systems.

Keywords: Self-Organized Criticality, Cascading Failures, Transmission
Network, Self-Organized Criticality Control

1. Introduction

Cascading events are ubiquitous in nature, e.g., they are found in power
grids failures, disease propagation, forest fires, brain seizures, and earth-
quakes. The size of such cascading events was found in many systems to
be approximately distributed according to a power law [1, 2, 3, 4]. Self-
organized criticality (SOC) has been suggested as a possible mechanism that
produces such a distribution of event sizes [5]. Here, self-organization implies
that even without parameter tuning, a system becomes critical, i.e., produces
scale-free event sizes, which are power-law distributed. However, SOC has
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been described more as a phenomenon [6], and the criteria that lead to SOC
are still unknown.

So far, most model systems that study self-organized criticality have been
limited to a local-spread of a cascade, i.e., the propagation of a cascade
happens contiguously between neighboring or directly-connected nodes of
the system. However, in real systems this restriction can be invalid. For
example, in the power-grid, voltages and currents redistribute very quickly
after a line trips (in practice, voltage ripples travel at more than 1000 miles
per second through the grid [7]). Thus, it is possible that lines trip that are
not directly connected to a previously tripped line. Brummitt et al. [8] called
this behavior a non-local spread of a failure and criticized that many stylized
models [9, 10] of power-grids assume that failures spread locally through
adjacent nodes and therefore provide little insight into power-grid failures.

Self-organized criticality tends to be robust to perturbations, and thus,
SOC systems are challenging to control in a way that alters the distribution
of event sizes [9]. Controlling or modifying a system such that event sizes
are not power-law distributed and instead decay faster (e.g., exponentially)
could decrease the frequency of large events by several orders of magnitude.
Thus, these modifications are beneficial when the cost of a large event is high.
For example, for the power-grid, the cost of an outage depends non-linearly
on its size: smaller outages can be compensated by backup systems, while
large events lead to lost revenue, spoiled goods, and other cost in addition to
repairs—the 2003 Northeast Blackout was estimated to reduce US earnings
by $6.4 Billion [11].

In this article, we demonstrate for the first time evidence for self-organized
criticality in a model of non-contiguous cascading failures. In our transmission-
network model, voltages in the network instantaneously redistribute accord-
ing to Kirchhoff’s laws. Moreover, we contribute successful strategies for
suppressing power-law-distributed event sizes.

In recent work on controlling an SOC system, the authors used a chip-
firing model [9]. Such models are crafted after the original Bak-Tang-
Wiesenfeld sandpile model [5], where chips are added to random nodes, and
a node redistributes its chips to its neighbors after the number of chips at
the node reaches a threshold. Here, we present a model that is closer to a
physically-real system. However, we do not attempt to model accurately real
power-grids. Instead, we aim for the optimal trade-off between model real-
ism and simplicity, which captures the essence of non-contiguous cascades,
while providing a model suitable for exploration. Our main motivation is to
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shed light on the conditions leading to self-organized criticality. The model
allows us to limit the dependence on parameters, to visualize the spread of
a cascade, and to study the impact of the grid’s graph structure.

2. The Model System

Our model consists of a network of power lines connecting nodes, direct-
current generators at each node, and loads connecting each node to ground
(Fig. 1). Unlike real power-grids, which use alternating currents, to simplify
our model, we focus only on direct-current circuits. Our current generators
vary in strength, with values Si randomly distributed uniformly in the inter-
val [0; I0] (here, I0 = 1)—the exact probability distribution of source sizes
appeared to have little effect on our results.

Si R 

r 
Vij , Iij 

i 

j 

Figure 1: A circuit model. Each node i is connected to a current source Si and a load
resistor R. The grid lines have a resistance of r.

For the grid network, we assume an arbitrary graph of n nodes. The graph
is defined given a symmetric connectivity matrix {Mij}, where Mij = 1 if
node i is connected to node j, and Mij = 0 otherwise. If a line trips, the
corresponding elements in M are set to zero.

For each node i, the source current Si gets distributed to the local load
R and to the neighboring nodes connected through lines with resistance r.

Thus, according to Kirchhoff’s laws,

Si −
Vi
R
−
∑
j∈Ni

Vi − Vj
r

= 0 , (1)
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where Vi is the voltage and Ni the set of neighbors of node i. Given the
connectivity matrix M of the graph, we can write the above equations as
follows, (

1

R
+
ki
r

)
Vi −

∑
j

Mij

r
Vj = Si , (2)

where ki is the degree of node i, ki =
∑

jMij. We can solve this set of linear
equations for the voltage distribution Vi (we used a sparse linear solver [12]).
The solution to (2) depends on the ratio of r/R, which we set to 0.001
(r = 0.01 and R = 10) unless otherwise noted, i.e., the resistance in the
transmission lines is low compared to the load at each node. Apart from
the graph structure, this ratio is the only parameter on which our model
depends.

Given Vi, we evaluate the current for each line

Iij =
|Vi − Vj|

r
(3)

and compute the maximum normalized current above threshold Tij,

∆Imax = max
ij

(
Iij − Tij
Tij

)
. (4)

If ∆Imax ≥ 0, the corresponding line trips, and we re-compute the voltage
distribution Vi. In our model, the redistribution of voltages happens instan-
taneously after each line failure. We call the consecutive failure of lines until
∆Imax < 0 an avalanche.

At the beginning of a simulation run, all Tij are set to T0 (here, T0 = 10).
To put stress on our network and bring lines to their limit, we let all Tij
decay exponentially until a line breaks and between avalanches. This decay
is a slow process. After the end of each avalanche, we immediately repair all
broken lines (reset Mij = 1 and Tij = T0). A related but opposite mechanism,
a cycle of gradual increase in demand and line upgrade, has been suggested
for a different kind of power-transmission model [13].

In our simulation, we used an outer and inner iteration loop to simulate
the slow and fast processes. The outer loop iterates over avalanches (500, 000
times), and the inner loop computes the cascade of an avalanche, iteratively
solving (2) and removing lines until all currents are below threshold. In each
iteration step t of the outer loop, we set T t+1

ij = λT t
ij for all lines and compute

λ such that the next line that would break is exactly at threshold to simulate
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an infinitely-gentle decay, λ = 1 + ∆Imax. Such an infinitely-gentle drive has
been also used in a version [6] of the Olami-Feder-Christensen earthquake
model [14]. In our model, using an infinitely-gentle decay turned out to
be important; otherwise, a discrete step (i.e., a fixed λ value) resulted in a
characteristic length, which would break SOC.

This updated rule for Tij furthermore makes the absolute values of r and
I0 irrelevant. However, we need to record λ, since the time interval between
avalanches is proportional to ∆t = ln(λ), and we evaluate the cost of repair
per unit time, as described below.

We did our experiments with three different types of graphs: square and
triangular lattices with L× L nodes and periodic boundary conditions (i.e.,
toroidal graphs) and a ladder graph with ends joined to form a ring. We
chose periodic boundary conditions because we wanted all nodes to be geo-
metrically indistinguishable to reduce limit-size effects. For our analyses, we
skipped the first 2,000 avalanches (unless otherwise noted) to give the system
sufficient time to reach a potential critical state (see Section 3.2).

3. Experiments and Analyses

In the following, we will demonstrate 1) the non-contiguous spread of
cascading failures, 2) evidence for SOC behavior, 3) mitigation strategies to
suppress power-law distributed avalanches, and 4) the impact of the graph
structure.

3.1. Non-contiguous cascades

We found that indeed in our model an avalanche forms several distinct
non-adjacent clusters of tripped lines (Fig 2). This behavior is possible since
the voltage redistribution is faster than the cascading failure of lines. To
distinguish a contiguous spread from a non-contiguous spread, we defined
a spread to be contiguous if for each line failure that line was part of the
same contiguous cluster of previously tripped lines. For a square lattice of
size L = 50, we used this method to compute the probability of a contiguous
spread as a function of avalanche size. As a result, this probability fell sharply
with increasing size: p=0.54 for an avalanche of 3 lines and p=0 for more
than 65 tripped lines; for the last case, not one out of 18,134 avalanches was
a contiguous spread.
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Figure 2: Sample of non-contiguous spread of an avalanche in a square lattice, L = 30,
with periodic boundary condition. The color code depicts the order in which the lines
tripped, with the first line to trip coded in red.

3.2. Evidence for self-organized criticality

Since a universally agreed definition of SOC has been missing [6] and the
term “SOC” has been overused, we define for clarification a system to be
SOC if it fulfills the following conditions

1. A complex system of multiple spatially separated components, where
an event, like an avalanche, spans across a multitude of components.

2. The system reaches a critical state, defined by the size of events being
free of scale and the average size approaching infinity.

3. Starting from a non-critical initial condition, the system self-organizes
to the critical state without parameter tuning.

This definition is consistent with many models considered to be SOC [6].
The purpose of point 1 is to exclude some 1/f noise processes [15]. In our
system, avalanches are spatially distributed.

Next, we demonstrate evidence that indicates that our system approached
a critical state. On the square and triangular lattices, the probability of
avalanche sizes followed a power law (Fig. 3). Thus, the sizes are free of scale
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(within the limits of the system size). For different L, the size distributions
overlapped, while the cut-off from the power law increased with system size,
which is an important condition for criticality.
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Figure 3: Scale-free behavior of avalanches in our circuit model for the square (Left) and
triangular lattices (Right). Power laws were fitted to the data for L = 50.

Interestingly, on the triangular lattice, the slope of the power law was
different. For the square lattice, the average slope was τ = −1.61 ± 0.03,
and for the triangular lattice, the slope was τ = −1.88 ± 0.03 (mean± SD,
4 simulations each with different random initialization, using L = 50). In
comparison, simulation results on sand-pile models indicate that the slope
is the same on square and triangular lattices [16]. In our case, having non-
contiguous avalanches might make the difference. Consider the graph that
links sites that could fail in a sequence. In contrast to the 2D sand-pile
model where this graph is planar (e.g., square or triangular lattice), a non-
contiguous spread creates cross links that may make the graph non-planar,
which may result in a different slope. This hypothesis is consistent with the
observation that a 3D sand-pile model has a different slope from a 2D model
[5].

In our model, the slope for both lattice types was larger than −2, which
implies that the average size of an avalanche diverges with increasing system
size. The lack of a characteristic size is a criteria for criticality.

Finally, we demonstrate that our system started in a non-critical state
and converged on its own to the critical state (Fig. 4). Thus, our system
self-organized to criticality. During this convergence, the system oscillated
between over-critical and sub-critical before settling into the critical state.
So far, this convergence to criticality has been underreported. In contrast
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to our observation, previous work showed an overdamped convergence from
sub-critical to critical [17]. In summary, our observations indicate that our
system is self-organized critical according to the above definition.
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Figure 4: Convergence to criticality. The results are shown for the square lattice with
L = 50. Data are averaged over time windows of 50 avalanches and over 500 separate
simulation runs with different random initializations of Si. The dashed line is the average
avalanche size for all avalanches from count 8000 to 10000. Three sample avalanche-size
distributions are shown, one over-critical that was obtained from avalanche count 1 to 50,
one sub-critical from count 176 to 225, and one critical from count 3951 to 4000. The solid
line in these graphs shows for comparison a power-law with slope τ = −1.61.

In addition, we tested the dependence on the model parameter r/R. This
parameter resulted also in a cut-off, which disappeared for r/R → 0 (Fig.
5). Therefore, strictly speaking, our system could be self-organized critical
only in the limit r/R→ 0. In a transmission network, this limit corresponds
to negligible link resistances compared to load resistances.

3.3. Mitigation strategies to suppress power-laws

We found two strategies that suppressed a power-law distribution of
avalanche sizes in our model. In our first strategy, we carried out additional
(unnecessary) repairs after each avalanche. Apart from repairing broken
lines, we chose a additional lines at random and upgraded their thresholds
to T0 independent of their value. As a result, the distribution of avalanche
sizes moved away from the power law and the effect increased with increas-
ing a (Fig. 6). Large avalanches became less likely, e.g., for a size of 100
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Figure 5: The relative resistance of the transmission lines, r/R, results in a finite size
effect. The results are shown on a square lattice with L = 50.

lines, the probability dropped by more than 20x for the square lattice, a = 2,
and L = 50. The reduction of large avalanches happened shortly after the
beginning of a simulation run and not just after the system reached SOC.

We hypothesize the following mechanism to be responsible for the ob-
served suppression of power laws. In the unperturbed case (a = 0), clusters
form at the critical state such that a failing line can trigger the cascading
failure of a whole cluster. When we upgrade a line at random, there is a
probability p ≥ ε > 0 that a line in an otherwise critical cluster will not fail,
where ε is the probability that the line just got upgraded. Thus, the prob-
ability that a whole cluster of m lines fails is upper-bounded by (1 − ε)m.
This exponential decay as a function of cluster size leads to a characteristic
length and prohibits a scale-free distribution of avalanche sizes, and thus,
no power law. The value of ε increases with increasing a leading to a faster
decay, which matches the observed behavior.

We evaluated if our repair strategy would actually reduce the total fi-
nancial cost. To estimate the cost, we start with a lower cost bound that is
linear in the total number of restored lines, i.e., x + a per avalanche, if x is
the size of the avalanche. However, the total cost likely increases faster than
linear due to the extra cost of large blackouts. Here, we do not aim to have
the exact relationship, but rather want to illustrate the impact of the non-
linearity, and therefore, we use the same relationship, xα, as recently used in
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a related article [9]. In addition, we need to take into account differences in
avalanche frequency, ν. Thus, our total cost, C, per unit time is

C = (xα + a)ν , (5)

where we set ν to the inverse of the average value of ∆t during one simulation
run (see above). As a result, if the non-linear increase was sufficiently large,
we observed a cost benefit of our repair strategy (Fig. 7).

Specifically, we observed a trade-off between the cost of additional up-
grades and their benefit, and the optimal number a depends on the form of
the non-linearity (Noël et al. observed a similar behavior for their control
strategy [9]).

In our second mitigation strategy, we upgraded each failed line to a ran-
dom threshold instead of T0. The random threshold was drawn uniformly
from the interval [T0 − µ/2;T0 + µ/2]. This strategy also suppressed the
power-law distribution (Fig. 8). For the square lattice with L = 50, the
decay in probability for large avalanche sizes increased with increasing noise
range µ and reached a plateau for about µ = 1.5T0. When computing the
same cost, C, as above, the cost per unit time dropped by 75% (here, a = 0
and α = 1.5).

The random update causes some lines to have a low threshold and thus
fail prematurely. Apparently, this failure counterintuitively has the positive
effect of reducing large-scale avalanches. It likely prevents the build up of
a large cluster of lines that are close to critical threshold. In addition, lines
that randomly get a high threshold can act as buffers to prevent a large-scale
cascade.

3.4. Impact of the graph structure

On the triangular and square lattices, we observed the same effect of our
mitigation strategies. Thus, our results are applicable beyond a specific kind
of graph.

In addition, network graphs exist that fail to show SOC behavior in the
first place: For example, on a ladder graph, we found that the probability of
an avalanche decreases exponentially with its size (Fig. 9).

Here, the spread of a cascade is restricted mainly to one dimension. We
hypothesize that the single dimension restricts the possible paths a cascade
can travel. For any specific path, the probability of a cascade traveling along
that path decays exponentially with path length. Thus, for an avalanche to
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be scale-free, this exponential decay has to be compensated by an exponential
increase in the number of possible paths. Apparently, for the ladder graph,
the number of possible paths does not increase exponentially despite the non-
contiguous spread of a failure. Since the spread is non-contiguous, however,
we lack a straightforward link between graph structure and the number of
possible paths. The mechanism behind the impact of the graph structure
on the occurrence of SOC and the slope of a power law is left for future
investigation.

4. Conclusions

To conclude, we have demonstrated a circuit model obeying Kirchhoff’s
laws, which produced cascading failures that spread non-contiguously. To our
knowledge, this model is the first with this property for which evidence for
self-organized criticality has been shown. We demonstrated that our model
converged to a critical state while oscillating between sub-critical and over-
critical states. Moreover, the occurrence of SOC depended on the model’s
graph structure, which also impacted the slope of the power law. Using this
model, we have shown two strategies that suppressed power-law distributed
cascades: the first strategy restores lines at random to their original state
independent of their condition. This strategy can be thought of as a form
of preventive maintenance. The second strategy restores a failed line to a
random trip threshold. We hypothesize that both strategies introduce an
exponential decay in probability for the propagation of an avalanche. In
contrast, criticality apparently requires the formation of large clusters of
lines for which the probability of avalanche propagation decays slower than
exponential. By preventing this formation, a system remains sub-critical.
Such insights might be applicable to prevent catastrophic events in real-world
systems that exhibit SOC behavior.
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[9] P.-A. Noël, C. D. Brummitt, R. M. D’Souza, Controlling self-organizing
dynamics on networks using models that self-organize, Physical Review
Letters 111 (2013) 078701.

[10] D. P. Chassin, C. Posse, Evaluating North American electric grid relia-
bility using the Barabási Albert network model, Physica A 355 (2005)
667–677.

[11] P. L. Anderson, I. K. Geckil, Northeast blackout likely to reduce US
earnings by $6.4 billion, Anderson Economic Group Working Paper 2.

[12] T. A. Davis, UMFPACK: unsymmetric multifrontal sparse LU factor-
ization package, http://www.cise.ufl.edu/research/sparse/umfpack/.

12



[13] B. A. Carreras, V. E. Lynch, I. Dobson, D. E. Newman, Dynamics, crit-
icality and self-organization in a model for blackouts in power transmis-
sion systems, in: Hawaii International Conference on System Sciences,
IEEE, 2002.

[14] Z. Olami, H. J. S. Feder, K. Christensen, Self-organized criticality in a
continuous, nonconservative cellular automaton modeling earthquakes,
Physical Review Letters 68 (1992) 1244–1247.

[15] K. P. O’Brien, M. B. Weissman, Statistical signatures of self-
organization, Physical Review A 46 (8) (1992) 4475–4478.

[16] S. S. Manna, Critical exponents of the sand pile models in two dimen-
sions, Physica A 179 (1991) 249–268.

[17] C. M. Aegerter, K. A. Lörincz, M. S. Welling, R. J. Wijngaarden, Ex-
tremal dynamics and the approach to the critical state: Experiments on
a three dimensional pile of rice, Physical Review Letters 92 (5) (2004)
058702.

13



10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Avalanche Size

P
ro

b
a

b
ili

ty
 o

f 
A

v
a

la
n

c
h

e
 S

iz
e

 

 

a = 0
a = 1

a = 2
a = 5

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Avalanche Size

P
ro

b
a

b
ili

ty
 o

f 
A

v
a

la
n

c
h

e
 S

iz
e

 

 

a = 0
a = 1

a = 2
a = 4

Figure 6: Restoring a additional lines at random locations at each iteration step (after
each avalanche) breaks the SOC behavior. The results are shown for the square (Left)
and triangular (Right) lattices with L = 50.
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Figure 7: Cost per unit time (normalized to 1 for a = 0) as a function of the number
of additionally restored lines for the square (Left) and triangular (Right) lattices with
L = 50. The cost depends non-linearly on the avalanche size, x, while α controls the
non-linearity, xα.
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Figure 8: The power law breaks when updating each line after each avalanche to a random
threshold (uniformly in an interval around T0). The results are shown for the square (Left)
and triangular (Right) lattices with L = 50.
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Figure 9: On a ladder graph with joined ends, the avalanches decay exponentially (for
n = 2500, the black line shows a linear fit to the semi-log plot giving an exponent of
−0.152± 0.002).
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