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Some human movement skills require optimizing a movement such that a future event has a desired
outcome. Such skills are, e.g., hitting a ball with a bat or swinging a golf club to achieve that the ball
has a desired trajectory. Learning a movement given only reward feedback is a typical reinforcement
learning problem (Sutton and Barto, 1998). While several researchers studied reinforcement learning
in robotics and machine learning, little is known about human reinforcement learning for movement
skills. For example, we do not even know which learning strategy humans choose in one of the
simplest reinforcement learning settings, i.e., with immediate reward feedback at the end of a
movement.

Here, we investigate this question using a behavioral paradigm mimicking a ball-hitting task
(Fig. 1 A). Subjects (n=10) sat in front of a computer screen and moved a stylus on a tablet
towards an unknown target. This invisible target was located on a line that the subjects had to
cross. Every subject did 100 movement trials. During each movement, visual feedback of the stylus
position on the screen was suppressed. After the movement, a reward was displayed graphically as
a colored bar. As reward, we used a Gaussian function of the distance between the target location
and the point of line crossing. The choice of this function was inspired by the work of Koerding
and Wolpert (2004), which suggested an inverted Gaussian loss function in sensorimotor tasks.

Subjects learned to adapt their movements towards the hidden target (Fig. 1 B and C). To
investigate how they updated their movement choice, we hypothesize three optimization strategies:

1) Reward-weighted average (RW): x̃i+1 = Rixi+Ri−1xi−1

Ri+Ri−1

2) Random search (RS): x̃i+1 = argmax{xi,xi−1}R(x)

3) Gradient ascent (GA): x̃i+1 = xi + η Ri−Ri−1

xi−xi−1

For simplicity, we assume subjects encode a movement with a single parameter, the point of line
crossing, xi. Thus, we assume the following scenario: at trial i, subjects choose a movement target
x̃i, experience a movement error νi, and observe the resulting movement xi = x̃i + νi and the
corresponding reward Ri(xi). Based on these observations, subjects choose a new movement target
x̃i+1 according to one of the above strategies. Without the noise νi, only GA would converge to the
goal if it is outside the interval [xi−1, xi], i.e., the noise assists exploration of new solutions. The
parameter η is the learning rate.

The above strategies make specific predictions on the dependence of the expectation value of
−(xi+1 −xi)/(xi −xi−1) on Ri−1/(Ri−1 + Ri), see Fig 2 A. Interestingly, only the prediction of RW
was consistent with the data of all 10 subjects (Fig 2 B). We can further quantify this result. In the
case Ri > Ri−1, the three different strategies predict distinct frequencies p of data points fulfilling
−(xi+1 − xi)/(xi − xi−1) > 0 : for RW, p > 0.5, for RS, p = 0.5, and for GA, p < 0.5, under the
assumption that the noise νi has mean 0. This distinction becomes intuitively clear by inspecting
Fig 2 A for Ri−1/(Ri−1 + Ri) < 0.5, and it can be proven. We computed p for each subject (Fig 2
C). The mean of p is significantly above 0.5 (t-test: p=0.005, Wilcoxon signed-rank test: p=0.01).
For simplicity, we limited the update rule to a time window of two data points, xi−1 and xi, but we
can prove and show experimentally a similar distinction as above for larger window sizes.

The result that humans may prefer reward-weighted averaging over gradient ascent seems sur-
prising. The literature on reinforcement learning is dominated by gradient-ascent methods. These
methods are indeed preferable if the movement variance (noise) is low. However, for the same noise
variance as observed in subjects, we found in simulation that reward-weighted averaging converges
faster than gradient ascent. Thus, one could hypothesize that humans choose an optimization
strategy that is the most suitable for their own movement variance.
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Figure 1: Experiment and raw data. A: Subjects move from a start point and need to cross a goal
line. The only feedback is a reward signal at the end of a movement. This reward is a Gaussian
function of the point of goal-line crossing. B: Movement adaptation through learning for a typical
subject. The first 10 (dashed red) and the last 10 movements (solid blue) are shown. C: Trial-by-
trial evolution of the reward, averaged across all 10 subjects. An exponential function is fitted to
the data.
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Figure 2: Comparison of optimization methods and results. A: Three optimization methods are
compared: reward-weighted averaging (red), random search (green), and gradient ascent (blue).
For gradient ascent, the results for three different learning rates are shown; these results were
obtained from simulation. B: On the same graph, experimental results (error bars show standard
errors) are compared to the prediction of reward-weighted averaging (red line). Before averaging,
experimental results were binned into 10 intervals equally spaced along the x-axis. C: Probabilities
p = p(−∆xi+1

∆xi
> 0 |Ri > Ri−1) are shown for all subjects. Only for reward-weighted averaging, the

average of p is expected to be above 0.5. The predicted p itself has variance, which depends on the
number of movement trials for each subject.
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