
Kernel PCA for Novelty Detection

Heiko Hoffmann 1,∗

Max Planck Institute for Human Cognitive and Brain Sciences, Amalienstr. 33,

80799 Munich, Germany

Abstract

Kernel principal component analysis (kernel PCA) is a non-linear extension of PCA.
This study introduces and investigates the use of kernel PCA for novelty detection.
Training data are mapped into an infinite-dimensional feature space. In this space,
kernel PCA extracts the principal components of the data distribution. The squared
distance to the corresponding principal subspace is the measure for novelty. This
new method demonstrated a competitive performance on two-dimensional synthetic
distributions and on two real-world data sets: handwritten digits and breast-cancer
cytology.
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1 Introduction

Novelty detection is one-class classification—for a review see Markou and
Singh [1,2]. In training, a machine learns from ordinary data. Later, using
previously unknown data, this machine tries to separate ordinary from novel
patterns.

One-class classification is useful when normal samples are abundant, but ab-
normal samples are rare. For example, healthy tissue outweighs malignant
cancer. Moreover, if the structure of novel data is obscure, one-class classifica-
tion might be advantageous over two-class classification. A machine learning
technique that works well for data with such characteristics would be of great
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benefit for medical diagnosis, particularly, for the early diagnoses of cancer,
which requires the examination of millions of humans [3,4].

For two-class classification, kernel support-vector machines (kernel SVM)
proved to be an excellent choice [5]. This non-linear variant of SVM uses the
kernel trick: that is, for algorithms in which the data points occur only within
scalar products, the scalar product can be replaced with a kernel function.
Thus, the data can be mapped into a higher-dimensional space, a so-called
feature space, while the algorithm still operates in the original space (see also
section 2).

Because of the success of SVM, attempts have been made to apply SVM to
novelty detection [6–8]. A SVM needs to separate the data against something.
In one-class SVM [6,7], the data are separated from the origin in feature space.
Alternatively, the support vector domain description (SVDD) [8] encloses the
data in feature space with a sphere; for radial-basis-function (RBF) kernels,
this procedure gives the same result as the one-class SVM [7]. However elegant,
these approaches are not satisfactory because for the some training sets, the
space enclosed by the corresponding decision boundaries is too large [9].

A different approach to novelty detection is to generate a simplified model
of the distribution of training data. For linear distributions, principal com-
ponent analysis (PCA) is the method of choice, but many interesting distri-
butions are non-linear. In the non-linear case, Gaussian mixture models [10],
auto-associative multi-layer perceptrons [11], and principal curves and sur-
faces [11] have been used. These methods, however, need to solve a non-linear
optimization problem and are thus prone to local minima and sensitive to the
initialization.

This article combines the distribution-modeling approach with kernel tech-
niques, which do essentially linear algebra. Here, the distribution of training
data is modeled by kernel PCA [12], which computes PCA in the feature space.
The novelty of the presented approach is to compute the reconstruction error
in feature space and to use it as a novelty measure. Decision boundaries herein
are iso-potential curves or surfaces of the reconstruction error. Though simple,
this method has to my knowledge not been reported before, and it turns out
to be a promising novelty detector.

The new method was tested on two-dimensional synthetic distributions and
on higher-dimensional real-world data. On the synthetic data, the decision
boundaries can follow smoothly the shape of the distribution of data points.
To test the performance quantitatively, an ordinary/ novel classification task
was carried out on two real-world data sets: handwritten digits and breast-
cancer cytology. For both data sets, a receiver-operating-characteristic (ROC)
analysis [13,14] demonstrates that the new method does better compared with

2



three alternatives: one-class SVM, standard PCA, and the Parzen window
density estimator. All of these methods depend on free parameters. However,
a proper parameter choice for kernel PCA leads to a performance that cannot
be matched by any parameter choice for the three other methods.

The remainder of this article is organized as follows. Section 2 briefly reviews
the kernel PCA algorithm. Section 3 describes the extensions to obtain the
novelty measure. Section 4 reports the experiments. Section 5 shows a discus-
sion, and section 6 concludes the article. Appendix A contains a theoretical
treatment of the reconstruction error with large kernel widths.

2 Kernel PCA

Kernel PCA [5,12] extends standard PCA to non-linear data distributions. We
assume a distribution consisting of n data points xi ∈ IRd. Before performing
a PCA, these data points are mapped into a higher-dimensional feature space
F ,

xi → Φ(xi) . (1)

In this space, standard PCA is performed. The trick herein is that the PCA
can be computed such that the vectors Φ(xi) appear only within scalar prod-
ucts [12]. Thus, the mapping (1) can be omitted. Instead, we only work with
a kernel function k(x,y), which replaces the scalar product (Φ(x) · Φ(y)).
In kernel PCA, an eigenvector V of the covariance matrix in F is a linear
combination of points Φ(xi),

V =
n

∑

i=1

αiΦ̃(xi) , (2)

with

Φ̃(xi) = Φ(xi) −
1

n

n
∑

r=1

Φ(xr) . (3)

The vectors Φ̃(xi) are chosen such that they are centered around the origin in
F . The αi are the components of a vector α. It turns out that this vector is an
eigenvector of the matrix K̃ij =

(

Φ̃(xi)·Φ̃(xj)
)

. The length of α is chosen such

that the principal components V have unit length: ||V|| = 1 ⇔ ||α||2 = 1/λ,
with λ being the eigenvalue of K̃ corresponding to α. To compute K̃, we
substitute Φ̃ according to (3). This substitution gives K̃ij as a function of the
kernel matrix Kij = k(xi,xj):
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K̃ij = Kij −
1

n

n
∑

r=1

Kir −
1

n

n
∑

r=1

Krj +
1

n2

n
∑

r,s=1

Krs . (4)

3 Measure for novelty

This section, first, motivates the reconstruction error in feature space, second,
considers the simplified case of computing only the distance to the center of the
training data in F , and, third, shows the computation of the reconstruction
error.

3.1 Motivation

The new method is geometrically motivated and aims at giving lower classifi-
cation errors than the one-class SVM. This article focuses on the RBF kernel,
particularly, the Gaussian kernel k(x,y) = exp(−||x − y||2/(2σ2)), since this
kernel is the most common for both one-class SVM and SVDD, and experi-
ments show that for these methods, the Gaussian kernel is more suitable than
the polynomial kernel [7–9]. This section illustrates that for RBF kernels, the
reconstruction-error decision boundary in F encloses data in general tighter
than the one-class SVM and gives thus a better description of the data (Fig.
1).

For RBF kernels, k(x,x) takes the same constant value for all x. Therefore,
in F , all Φ(x) lie on a hyper-dimensional sphere S. Figure 1 shows only three
dimensions of F , but for RBF kernels, F is infinite-dimensional [5]. However,
this illustration is still meaningful since n data points Φ(xi) can span only a
finite space U , which is maximally n-dimensional if we include the origin in
F . Due to the rotational invariance of the Euclidean norm, also in U , the data
lie on a sphere that is embedded in U and centered at the origin.

If we require that all data points are enclosed by the decision boundary (hard
margins), the SVDD encloses all data points in F with a sphere as tight as
possible, and the one-class SVM puts a plane as close as possible to {Φ(xi)}
to separate them from the origin. Since the intersection of the SVDD sphere
with S equals the intersection of the SVM plane with S, the boundary on S
is the same for both methods [7] (a circle for a three-dimensional U , see Fig.
1). This boundary, however, does not tightly enclose the data distribution if
the data have a multiform variance in F .

In contrast, the reconstruction error takes into account the heterogeneous
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Fig. 1. Decision boundaries in the feature space of an RBF kernel, comparing one–
class SVM, SVDD, and the reconstruction error. (A) The boundaries are illustrated
in a three-dimensional feature space. All data points Φ(xi) lie on a sphere. (B)
Cross-section through the center of the SVDD sphere and orthogonal to the princi-
pal component for the situation in A.

variance of the distribution in F . For multi-variate data, orthogonal to the
principal subspace, the decision boundary is closer to the data distribution
than the SVDD sphere (Fig.1). In the direction of the principal subspace,
also a boundary emerges since S is bending away from the principal subspace
(as for the one-class-SVM plane—see Fig. 1 B and Fig. 5). This emerging
boundary ensures that the total boundary is closed; this characteristic seems to
be missing for polynomial kernels (Fig. 2, Left), where {Φ(xi)} is not restricted
to a sphere. To conclude, compared with the one-class SVM, for the same
number of enclosed data points, the reconstruction-error boundary encloses a
smaller volume in S.

This illustration already gives an insight for choosing the two free parameters
of kernel PCA: the kernel width σ and the number of eigenvectors q. The width
σ must be within a range of optimal values. For small σ, k(xi,xj) ≈ 0 for all
i and j with i 6= j. Thus, all Φ(xi) are (almost) orthogonal to each other,
and a PCA becomes meaningless. For large σ, the reconstruction error in F
approaches the reconstruction error for standard PCA (see appendix A). Fur-
thermore, q needs to be sufficiently large, because otherwise, the reconstruc-
tion error is high for some points within the data distribution. Consequently,
the threshold on the novelty measure would be also high leading to a loose
decision boundary (the same holds also for standard PCA). The dependence
on σ and q is studied in the experimental section.
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3.2 Spherical potential

With no principal components, the reconstruction error reduces to a spherical
potential field in feature space. All we need is the center of the data in F ,
Φ0 = 1/n

∑n
i=1

Φ(xi). The potential of a point z in the original space is the
squared distance from the mapping Φ(z) to the center Φ0,

pS(z) = ||Φ(z) − Φ0||2 . (5)

The squared magnitude can be written with kernel functions using the expres-
sion for Φ0,

pS(z) = k(z, z) − 2

n

n
∑

i=1

k(z,xi) +
1

n2

n
∑

i,j=1

k(xi,xj) . (6)

All parts of this equation are known. The last term is constant, and can
therefore be omitted. For RBF kernels, the first term is also constant, and the
potential can be simplified to

p̃S(z) = −2

n

n
∑

i=1

k(z,xi) . (7)

This function is up to a multiplicative constant equal to the Parzen window
density estimator [15].

3.3 Reconstruction error

As novelty measure, we use the reconstruction error [16] in feature space,

p(Φ̃) = (Φ̃ · Φ̃) − (W Φ̃ · W Φ̃) . (8)

Φ̃ is a vector originating from the center of the distribution in feature space,
Φ̃(z) = Φ(z)−Φ0. Let q be the number of principal components. The matrix
W contains the q row vectors Vl. The index l denotes the lth eigenvector,
with l = 1 for the eigenvector with the largest eigenvalue.

We need to eliminate Φ̃ in (8), and write the potential as a function of a
vector z taken from the original space. The projection fl(z) of Φ̃(z) onto
the eigenvector Vl =

∑n
i=1

αl
iΦ̃(xi) can be readily evaluated using the kernel

function k,
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fl(z) = (Φ̃(z) · Vl) =





[

Φ(z) − 1

n

n
∑

r=1

Φ(xr)

]

·




n
∑

i=1

αl
iΦ(xi) −

1

n

n
∑

i,r=1

αl
iΦ(xr)









=
n

∑

i=1

αl
i



k(z,xi) −
1

n

n
∑

r=1

k(xi,xr)

− 1

n

n
∑

r=1

k(z,xr) +
1

n2

n
∑

r,s=1

k(xr,xs)



 . (9)

Here, the second equality uses (3). As a result, p(Φ̃) can be expressed as

p(Φ̃) = (Φ̃ · Φ̃) −
q

∑

l=1

fl(z)2 . (10)

The scalar product (Φ̃ · Φ̃) equals the spherical potential (6). Thus, the ex-
pression of the potential p(z) can be further simplified,

p(z) = pS(z) −
q

∑

l=1

fl(z)2 . (11)

This is the desired form of the novelty measure in IRd.

The above computation of fl(z) requires n evaluations of the kernel function
for each z. Since for all l components, the same kernels can be used, the total
number of kernel evaluations is also n.

4 Experiments

The decision boundaries for the new method are illustrated using two-dimensional
synthetic distributions. Furthermore, this method is applied to higher-dimensional
data, handwritten digits and breast-cancer cytology.

4.1 Methods

The methods section comprises the different data sets, the implementation
and evaluation of kernel PCA, and the alternative novelty detectors used for
comparison.
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4.1.1 Data sets

Kernel PCA for novelty detection was tested on synthetic and real-world data
sets. Five synthetic distributions were used: square, square-noise, ring-line-
square, spiral, and sine-noise.

Square: The square consists of four lines, 2.2 long and 0.2 wide (Fig. 2).
Within the area of these lines, 400 points were randomly distributed with
equal probability.

Square-noise: The square-noise was generated by adding to the above distri-
bution 50 noise points randomly drawn from the area {(x, y) | x ∈ [0, 3], y ∈
[0, 3]}, which surrounds the square (Fig. 5).

Ring-line-square: The ring-line-square distribution is composed of a ring
with an inner diameter of 1.0 and an outer diameter of 2.0, a square with the
size as described above, and a 1.6 long and 0.2 wide line connecting the two
parts (Fig. 3). Within the area of these three parts, 850 points were randomly
distributed with equal probability.

Spiral: The area of the spiral is defined by the set {(x, y) | x = (0.07ϕ +
a) cos(ϕ), y = (0.07ϕ + a) sin(ϕ), a ∈ [0, 0.1], ϕ ∈ [0, 6π]}. Within this area,
700 points were randomly distributed with equal probability (Fig. 4).

Sine-noise: The sine-noise distribution consists of a sine-wave and surround-
ing noise (Fig. 6). In the sine-wave part, 500 points are uniformly distributed
along y = 0.8 sin(2ϕ) with ϕ ∈ [0, 2π]. These points are surrounded by 200
points that were distributed randomly with equal probability in the rectangle
{(x, y) | x ∈ [0, 2π], y ∈ [−1.5, 1.5]}.

Two real-world data sets were used: handwritten digits and breast-cancer data.

Digit 0: The digits were obtained from the MNIST digit database [17]. The
original 28 × 28 pixels images are almost binary (see Fig. 11). Thus, the dig-
its occupy only the corners of a 784-dimensional hyper-cube. To get a more
continuous distribution of digits, the original images were blurred and sub-
sampled down to 8 × 8 pixels. The MNIST database is split into training set
and test set. To train the novelty detectors, the first 2 000 ‘0’ digits from the
training set were used. For the 0/not-0 classification task, from the test set,
all 980 ‘0’ digits were used together with the first 109 samples from each other
digit.

Cancer: The breast-cancer data were obtained from the UCI machine-learning
repository [18]. These data were collected by Dr. William H. Wolberg at the
University of Wisconsin Hospitals in Madison [19]. The patterns in this data
set belong to two classes: benign and malignant. Each pattern consists of nine

8



cytological characteristics such as, for example, the uniformity of cell size.
Each of these characteristics is graded with an integer value from 1 to 10,
with 1 being typical benign. The database contains some patterns with miss-
ing attributes, these patterns were removed before further processing. The
remaining patterns were scaled to have unit variance in each dimension. To
avoid numerical errors because of the discrete values, a uniform noise from
the interval [−0.05, 0.05] was added to each value. The novelty detectors were
trained on the first 200 benign samples. The remaining samples were used for
testing: 244 benign and 239 malignant.

4.1.2 Kernel PCA implementation and evaluation

Kernel PCA was computed on all data points of each distribution. Unless
otherwise noted, a Gaussian kernel with width σ was used. Exploratory tests
with two other RBF kernels, the ‘multi-quadratic’ and the ‘inverse multi-
quadratic’ [5], gave similar optimal results. However, since the Gaussian kernel
is commonly used for the one-class SVM, the SVDD, and the Parzen density,
this kernel is the only RBF kernel presented here.

The eigenvectors α of K̃ were extracted using the routine ‘dsyevx’ from the
linear algebra package LAPACK. This package is based on BLAS, a stan-
dard for basic linear algebra computations. Both BLAS and LAPACK are
Fortran77 libraries, which can be linked into C/C++ code. Here, BLAS was
optimized for the Athlon CPU using the software ATLAS, version 3.6.0 (see
http://math-atlas.sourceforge.net/).

The classification performance on the real-world data was evaluated using
ROC curves. A ROC curve plots the fraction of test patterns correctly clas-
sified as novel (true positives) versus the fraction of patterns incorrectly clas-
sified as novel (false positives) to illustrate the performance over all possible
decision thresholds (see Fig. 8). To compute such a curve, first, the reconstruc-
tion error p(zi) was evaluated for all test patterns i. Second, the set {p(zi)} was
sorted according to the p-values. Finally, by counting how many novel and or-
dinary samples are above a decision threshold taken between two neighboring
p-values, the fractions of false and true positives are readily available. Thus,
for each p(zi), there is a point on the ROC curve. Together, these points cover
the full range of false positives: from 0 to 1.

4.1.3 Alternative novelty detectors

Three alternatives to kernel PCA were tested: the Parzen window density
estimator, standard PCA, and the one-class SVM [6] (SVDD produces the
same result as the one-class SVM). Thus, the comparison is limited to those
methods that are related to the new method. Excluded are methods, like
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Gaussian mixture models, that require iterative solvers and many parameters,
since the consequent multitude of possible outcomes makes a just comparison
seemingly impossible (a comparison as in Fig. 9 and 10 would be impossible).

The Parzen window density estimator constructs a probability density function
(pdf) from a data distribution by summing kernel functions centered around
each data point [15]. This pdf is therefore proportional to the spherical po-
tential in feature space (7), see section 3.2. For all experiments, a Gaussian
kernel with width σ was chosen. On the square data, the optimal σ was chosen
to maximize the mean probability across data points if each point’s probabil-
ity is computed based on the pdf given all other data points (leave-one-out
cross-validation).

PCA uses the reconstruction error in IRd as novelty measure. Thus, the PCA
detector was obtained as a special case of the new method by choosing k(x,y) =
(x · y).

The one-class SVM was tested using the library LIBSVM, version 2.71 [20]. A
Gaussian kernel with width σ was used for all experiments. For the synthetic
distributions that include noise, the value of σ was chosen to maximize the
number of noisy points outside the decision boundary plus the number of
regular points inside the boundary. To adjust the decision threshold, one-
class SVM has a further parameter ν. Its value is approximately equal to the
fraction of false positives in a novelty classification task [6]. Thus, the ROC
curves were computed by varying ν.

4.2 Results

This section compares qualitatively kernel PCA for novelty detection with
other methods, studies the influence of noise in the training data on the deci-
sion boundary, investigates the dependence on the kernel parameter σ and on
the number of eigenvectors q, and finally, based on the digit 0 and the cancer
set compares quantitatively kernel PCA with other methods.

4.2.1 Decision boundaries on synthetic data

On the square data set, Fig. 2 compares qualitatively the decision boundaries
for PCA, the Parzen density, kernel PCA with a polynomial kernel, and kernel
PCA with a Gaussian kernel (here, the one-class SVM was omitted since its
result was similar to the one obtained with kernel PCA using a Gaussian
kernel). The decision thresholds were chosen, such that the boundaries enclose
all training points as tight as possible.
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Fig. 2. Decision boundaries for various methods: (Top left) PCA reconstruction error
with q = 1 eigenvector, (Top right) Parzen window density estimator with σ = 0.05,
(Bottom left) reconstruction error in F with polynomial kernel k(xi,xj) = (xi ·xj)

10

and various q values, (Bottom right) reconstruction error in F with Gaussian kernel
using σ = 0.4 and q = 40.

The Parzen density does not generalize well: the decision boundary follows
the irregularities of the distribution (a larger σ did not improve the boundary
either—see Fig. 7). A linear model like PCA cannot describe the square distri-
bution. Kernel PCA with a polynomial kernel does not suitably describe this
distribution either (other polynomial degrees did not give significantly better
results). With a Gaussian kernel, however, the decision boundary follows the
shape of the distribution without getting disturbed by local irregularities. This
ability is further illustrated using the ring-line-square (Fig. 3) and the spiral
distribution (Fig. 4).

To test how the reconstruction-error boundaries cope with noise within the
training data, the square-noise and the sine-noise distributions were used, and
the result is compared with the one-class SVM (Fig. 5 and 6). For kernel PCA,
the decision threshold was chosen such that the fraction of outliers equals the
given fraction η of noise points; for the one-class SVM, ν was set equal to
η. Using the reconstruction error in F , the decision boundary can enclose
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Fig. 3. Decision boundary for the ring-line-square distribution using the reconstruc-
tion error in F with σ = 0.4 and q = 40.
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Fig. 4. Decision boundary for the spiral distribution using the reconstruction error
in F with σ = 0.25 and q = 40.

smoothly the main part of the data, almost undisturbed by noise 2 ; the SVM
boundary extends into the outlier region.

Kernel PCA depends on the number of principal components q and on the
width of the Gaussian kernel σ. On the square distribution, for small σ, in-
creasing the number of eigenvectors changed only little the shape of the deci-
sion boundary (Fig. 7). Increasing both σ and q resulted in a good performance
(Fig. 7).

4.2.2 Novelty detection on real-world data

On both the digit 0 and the cancer data set, kernel PCA for novelty detection
could achieve lower classification errors compared with the one-class SVM,
PCA, and the Parzen density (Fig. 8 to 10). Since all tested methods depend
on free parameters, the area under the ROC curve is shown as a function of
these parameters. This illustration demonstrates that for PCA, the Parzen

2 The number of principal components is lower compared with the no-noise case;
otherwise, the boundary would also include nearby noise.
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Fig. 5. Decision boundaries on noisy data comparing kernel PCA (σ = 0.3, q = 20)
with the one-class SVM (σ = 0.362, ν = 1/9). (Left) Result on the square-noise set.
(Right) Illustration of the corresponding decision boundaries in F (see Figure 1).
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Fig. 6. Decision boundaries for the sine-noise distribution comparing kernel PCA
(σ = 0.4, q = 40) with the one-class SVM (σ = 0.489, ν = 2/7).
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Fig. 7. Dependence on the kernel width σ and on the number of eigenvectors q. The
width σ increases from top to down, taking the three values: 0.05, 0.1 and 0.4. The
number q increases from left (q = 0) to right (q = 40).

density, and the one-class SVM, no parameter choice is possible to match the
optimal performance of the kernel PCA method.

In the kernel PCA and Parzen case, σ has a lower limit (Fig. 9), because below
this limit, samples exist from both ordinary and novel classes that numerically
reach the maximal potential p (due to the rapidly decreasing Gaussian func-
tion). Thus, tests for these low σ values were omitted. For the one-class SVM,
the range of possible σ values was even smaller. Using a small σ, for any choice
of ν, the number of false positives did not fall below a limit (Fig. 8). Therefore,
the area under such a ROC curve could not be computed. However, also these
ROC curves are well below the optimal curve from kernel PCA (Fig. 8).

The new kernel PCA method achieved high ROC areas on both data sets
(maximum areas of 0.9953 and 0.9971 for digit and cancer, respectively), even
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Fig. 8. ROC curves on the digit and the cancer data. Kernel PCA using σ = 4 and
q = 100 (digit 0) and σ = 2 and q = 190 (cancer) is compared with the one-class
SVM for various σ values.
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Fig. 9. Performance depending on the kernel width σ using the digit and the cancer
data. Kernel PCA for various q values is compared with the Parzen density and the
one-class SVM. For the cancer data, the ROC area of the one-class SVM is below
the range shown in this diagram.

though, the structure of the data appears to be different in both cases. On
the digit set, a linear model like PCA does better than the Parzen density
(maximum area: 0.9893 versus 0.9873); on the cancer set, however, the Parzen
density does very good (maximum area: 0.9966), but PCA does much worse
(maximum area: 0.9828).

Furthermore, the results show the behavior in the limit of small and large σ
values. For small σ, the performance of the reconstruction error in F and of
the Parzen density become almost equal (Fig. 9). This behavior matches the
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Fig. 10. Performance depending on the number of eigenvectors q using the digit and
the cancer data. Kernel PCA for various σ values is compared with standard PCA.

observation of the decision boundaries (Fig. 7). For large σ, the performance
reaches the level of PCA, if q is smaller than d—otherwise PCA is meaningless
(Fig. 10). This limit behavior can be also predicted theoretically (see appendix
A).

A final test further illustrates the proper function of the new method. The
reconstruction error in F was used to find unusual ‘0’ digits within in the
MNIST test set. Fig. 11 displays the ten digits that had the highest recon-
struction errors. Most of these samples look indeed unusual.

p = 0.033 p = 0.032 p = 0.031 p = 0.023

p = 0.021 p = 0.021 p = 0.019 p = 0.019 p = 0.018

p = 0.036

Fig. 11. The 10 most unusual ‘0’ digits from the MNIST test set. The digits are
arranged in descending order of their reconstruction error p (σ = 4, q = 100). The
figure shows the unprocessed digits of size 28 × 28 pixels; for novelty detection,
however, the processed digits (8 × 8 pixels) were used.
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5 Discussion

This section discusses the effect of noise in the training data, mentions concerns
about the computational complexity of the new method, and points out other
related methods.

5.1 Noisy data

Novelty detectors learn from data that are assumed to contain only represen-
tatives of the ordinary class. In real applications, however, these data contain
noise, thus, outliers. Therefore, a good novelty detector should be robust to
noise. In the presented model, outliers might distort the principal components
extracted by kernel PCA. Like PCA, its kernel variant is not robust against
such noise [21,22]. However, as for PCA, also for kernel PCA, robust ver-
sions exist [21,22]. These approaches essentially try to remove outliers, either
before or in alternation with computing the principal components. The pre-
sented method has the advantage that it uses a standard algorithm, kernel
PCA. Thus, improvements and modifications of this algorithm can be readily
applied.

No robust versions of kernel PCA were used here for the reported experi-
ments; nevertheless, the new decision boundaries appeared to be robust under
noise (Fig. 5 and 6). This robustness may be explained by the almost uni-
form variance of the added noise; thus, probably, the principal components
were undisturbed. This noise, however, did disturb the results of the one-class
SVM (Fig. 5 and 6). In feature space, the sphere (the SVM boundary on S)
that encloses the data is less tight around the noise-free part of the distribu-
tion than the reconstruction-error boundary (section 3.1). Thus, for the same
number of enclosed points, the one-class SVM encloses more outliers than the
new method (Fig. 5, Right).

5.2 Computational complexity

Kernel PCA is computational expensive. Most time consuming is the extrac-
tion of the eigenvectors of K̃, which is O(n3) if extracting all eigenvectors
[23]. Additionally, if searching for the parameters σ and q, for example, by
cross-validation, the computation time is further multiplied by the number of
PCA evaluations. Kernel PCA is also memory exhaustive: the n × n matrix
K̃ needs to be stored, and in the presented experiments, only a tiny fraction
of entries in K̃ were almost zero. Therefore, on large data sets, Monte-Carlo
sampling is necessary.
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Furthermore, testing is expensive. For each new data point, the kernel function
needs to be evaluated n-times. However, this number could be reduced using
so-called ‘reduced-set methods’ [24,25].

The one-class SVM is faster: using an Athlon 1800+, on the digit-0 data,
with σ = 2 and ν = 0.1, LIBSVM needed 1.3 seconds for training and 0.5
seconds to classify all test patterns. In contrast, kernel PCA with σ = 4 and
q = 100 needed 31.6 seconds for training (computing the kernel matrix and
extracting eigenvectors) and 34.4 seconds for testing. However, computing a
ROC curve using the reconstruction error does not require any noticeable
additional computation time, but the one-class SVM needs to be retrained for
different ν values.

5.3 Related methods

The reconstruction error in F is similar to but differs from the squared error
in the denoising application of kernel PCA [26]. To denoise a pattern x, its
mapping Φ(x) is projected onto the principal subspace. The denoised pat-
tern z is obtained by minimizing the squared distance between Φ(z) and the
projection of Φ(x). Figure 12 illustrates the difference to the reconstruction
error.

(z)

Φ

Φ

(x)

principal component

denoising distance
p

Fig. 12. The difference between the distance to be optimized in denoising and the
reconstruction error p.

Tax and Juszczak [9] used kernel PCA as a preprocessing step for novelty
detection. Kernel PCA is used to whiten (to make the variance in each di-
rection equal) the data in feature space. Later, these data are enclosed by a
sphere to obtain a one-class classifier [8]. A problem for whitening are direc-
tions with variance close to zero. In the present study, the variance is close to
zero for most directions a distribution expands to (if σ is not too small). Thus,
whitening is disadvantageous because on the one hand, normalizing these di-
rections is prone to computational errors, and on the other hand, omitting
these directions ignores the low variance, since everything will be enclosed in
a sphere.

18



6 Conclusions

This article studied kernel PCA for novelty detection. A principal subspace
in an infinite-dimensional feature space described the distribution of training
data. The reconstruction error of a new data point with respect to this sub-
space was used as a measure for novelty. This new method demonstrated a
higher ordinary/novel-classification performance on a handwritten-digit and
a breast-cancer database compared with the one-class SVM and the Parzen
window density estimator. Both of these methods were competitive in past
experiments [1,2].

Using the reconstruction error in feature space, the decision boundaries fol-
lowed smoothly the shape of two-dimensional synthetic distributions, without
getting distorted by the position of single data points. Thus, the new method
appears to generalize better compared with the Parzen density. Furthermore,
compared with the one-class SVM, the presented method demonstrated to be
more robust against noise within the training set.

This article demonstrated the dependence on the kernel parameter σ and
on the number of eigenvectors q. For small σ, the new method behaved like
the Parzen density. For large σ, the reconstruction error in feature space ap-
proaches the reconstruction error for standard PCA. The number of eigen-
vectors q had to be sufficiently large for a near optimal performance on both
real-world data sets and on the synthetic distributions without noise.

Future work aims at finding rules for choosing the two free parameters, σ and
q (without the need of a time-consuming cross-validation step). Of advantage
should be therein that a wide range of parameters resulted in a near opti-
mal performance. Furthermore, the range of usable data distributions needs
to be explored. The arguments in section 3.1 already suggest that such distri-
butions have to originate from an underlying manifold or from some locally
connected structure, as also most dimension-reduction techniques require (see,
for example, mixture of local PCA [27] and locally linear embedding [28]).
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A Behavior at large kernel widths

This section analyzes theoretically the behavior of the reconstruction error in
feature space at large widths σ of the Gaussian kernel. For σ ≫ max ||xi−xj ||
and q < d, the ‘kernelized’ reconstruction error approaches the reconstruction
error in the original space IRd.

We assume σ ≫ max ||xi−xj ||, and thus, ignore orders smaller than O(1/σ2).
Therefore, the Gaussian kernel can be approximated as k(x,y) ≈ 1 − ||x −
y||2/(2σ2). We will show that with this approximation, the reconstruction
error (11) is proportional to (11) with k(x,y) = (x · y), which corresponds to
standard PCA. First, substituting the approximated kernel into the spherical-
potential component (6) gives

pS(z) ≈ 1

σ2



(z · z) − 2

n

∑

i

(z · xi) +
1

n2

∑

i,j

(xi · xj)



 . (A.1)

This potential pS has two important properties: it scales as 1/σ2, and the
expression in the square brackets equals the spherical-potential component
for the polynomial kernel k(x,y) = (x · y).

In addition, we use the above substitution to compute the eigenvector projec-
tions (9):

fl(z) ≈ 1

σ2

∑

i

αl
i



 (z · xi) −
1

n

∑

r

(xi · xr)

− 1

n

∑

r

(z · xr) +
1

n2

∑

r,s

(xr · xs)



 . (A.2)

Again, the expression in the square brackets is the same as for k(x,y) = (x·y).
We still need to evaluate how αl

i depends on the approximated kernel function.
The variables αl

i are the components of the eigenvectors of the kernel matrix
K̃, which is computed according to (4) such that the data have zero mean in
feature space (see section 2). Substituting the approximated kernel function
into (4) gives

K̃ij ≈
1

σ2



 (xi · xj) −
1

n

∑

r

(xi · xr)

− 1

n

∑

r

(xj · xr) +
1

n2

∑

r,s

(xr · xs)



 . (A.3)

20



Apart from the factor 1/σ2, this formula is the same as for k(x,y) = (x · y).
Thus, in both cases, also the eigenvectors are the same, but the eigenvalues
differ by the factor 1/σ2. Since the length of α is 1/

√
λ (see section 2), the

components αl
i for the approximated Gaussian kernel equal the corresponding

components for PCA times σ. Thus, since fl is squared in (11), we again have
the same 1/σ2 factor as in (A.1). In total, the reconstruction error in feature
space differs only by a constant factor from the reconstruction error in the
original space. Therefore, the results on novelty detection are the same.
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