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Abstract

This study investigates whether goal-directed
action selection and spatial mental transforma-
tions can be accomplished based on a chain of
concatenated forward models. A forward model
was trained with visual and motor data obtained
from a mobile robot. A chain of identical forward
models allowed predictions beyond one time step.
We studied the accumulation of prediction errors
theoretically and experimentally, and applied the
chain model for two tasks. First, by applying an
optimization procedure to the chain, a sequence
of motor commands was determined that leads
from an initial to a goal state. Second, we used
the model for a mental transformation task driven
by simulated motor commands.

1. Introduction

Forward models are internal sensorimotor models that
predict how the sensory situation changes as a result of
an agent’s actions. The concept of forward models was
originally introduced to motor control. However, recent
results and new conceptual ideas broadly extended the
range of cognitive capabilities in which internal sensori-
motor models and specifically forward models are sup-
posed to be involved. Wolpert et al. (2003) suggest
that action observation, imitation, social interaction,
and even ‘theory of mind’ could be based on these inter-
nal models. Hesslow (2002) presents a ‘simulation theory
of cognitive function’, which ‘postulates the existence of
an associative mechanism that enables the preparatory
stages of an action to elicit sensory activity that resem-
bles the activity normally caused by the completed overt
behavior’. Forward models could also play a role in spa-
tial perception: understanding the behavioral meaning
of an object may be an internal simulation of the sensory
consequences of actions targeted at this object (Möller,
1999).

In this paper, we explore the capabilities of chain-
ing forward models - concatenating input and output of
two consecutive stages (see also Hesslow (2002), Jirenhed
et al. (2001), and Tani (1996) for using a chain of forward
models for prediction). Instead of trying to model hu-
mans or animals, we construct a simple model capable of
performing goal-directed movements and mental trans-
formation in a real environment. In this way, we hope to
enlighten these ‘human’ capabilities. Further, we restrict
our study by excluding any social ability like imitation
or theory of mind - in that context, forward models were
discussed by Wolpert et al. (2003) and Grush (2003),
and implemented by Demiris and Hayes (2002).

Goal-directed planning usually requires not only the
selection of a single motor command, but of a whole se-
quence. We suggest to understand the search for a mo-
tor sequence as an optimization in a chain of identical
forward models. The input to the chain is the current
sensory situation. The optimization criterion is that the
sequence of actions results in an output of the last stage
in the chain that matches the goal-situation. The free
parameters are the motor commands for each stage. The
idea is that the perceptual judgment leading to the se-
lection of actions is not only based on visual data, but
on visual data in the context of one’s own behavior. We
will show that the chain of forward models enables the
selection of action sequences leading to a goal.

The chain can be further used for mental transforma-
tions. Here, the motor commands are given, and the
forward model is used to predict the resulting sensory
changes. However, the motor commands are not exe-
cuted, but only drive the mental transformation of sen-
sory situations. Forward models in this context were also
discussed by Hesslow (2002) and Grush (2003). Here, we
show that the knowledge of the sensorimotor relation-
ships (incorporated in a trained forward model) can be
the basis of perceptual judgment. Perceptual distortion
is widespread in biological visual systems, for example
due to inhomogeneous distribution of receptors or prop-



erties of the optical projection. Lines on a picture mostly
do not look like lines on the retina or on the visual cor-
tex. Thus, associating constant properties in the exter-
nal world with a representation of the constancy may be
difficult without a teacher who marks the changing im-
age features as belonging to the same physical property.
However, associating the visual changes with the move-
ments causing these changes could be a means to accom-
plish perception of constancy. O’Regan and Noë (2001)
suggested that the ‘mastery of sensorimotor contingen-
cies governing visual exploration’ is the basis of visual
perception. This seems similar to the above ideas. Dif-
ferent from our approach, O’Regan and Noë (2001) did
not use forward models and robot experiments in their
studies.

For our experiments, we use a mobile robot with omni-
directional vision. We deliberately select a simple exper-
imental setup where the robot is surrounded by a cir-
cle of obstacles. Full panoramic vision and the specific
setup guarantee that all relevant visual information is
available. Moreover, depth information can be directly
extracted from a single image. Therefore, no memory is
necessary, but the setup is restricted. Other robot stud-
ies working with a chain of forward models (Tani, 1996;
Jirenhed et al., 2001) use recurrent neural networks with
context layers. These allow more complex environments.
But, omitting context units allows us to do predictions
without the need to move the robot to initialize the con-
text values. Omitting memory will further ease the the-
oretical investigation.

Two tasks are studied. The first task is an action se-
lection task, where the robot’s goal is to get close to an
obstacle in a predefined direction. In the second task,
mental transformation is used to decide if the robot is
in the middle of the circle or not. This is based on the
internal simulation of a rotation of the robot. The loca-
tion of the omni-directional vision system is chosen such
that it does not coincide with the robot’s rotational axis.
Otherwise, this would make the task trivial from the per-
spective of direct image processing.

Training and test are separated. Training data are
collected by random exploration. The forward model
is realized by a multilayer perceptron (MLP) (see Jor-
dan and Rumelhart (1992) for MLPs used as forward
models). The network associates a motor velocity vector
(comprising the velocity of left and right side of wheels)
with a change in the preprocessed and compressed visual
information. A chain of concatenated MLPs enables the
prediction of a change in sensory situation induced by
a sequence of short movements with given velocity vec-
tors. Since the accumulation of prediction errors can be
critical, the increase of the error with increasing chain
length is studied theoretically and compared with the
performance of the MLP.

The remainder of this article is organized as fol-

lows: section 2 describes the methods used, the robot
setup, the data collection, the image processing, the for-
ward model network, the optimization methods for the
goal-directed movements, and the mental transformation
task. Section 3 shows the results of the robot experi-
ments, which are discussed in section 4. Section 5 draws
conclusions. Appendix A describes theoretically the ac-
cumulation of prediction errors.

2. Methods

2.1 Robot setup

We used a Pioneer 2 AT four-wheel robot from ActivMe-
dia Robotics (see Fig. 1). It has differential steering and
was equipped with a panoramic vision system based on
an omni-directional hyperbolic mirror (middle size, wide
view) from Accowle (Fig. 2)1. The camera’s optical axis
was positioned 12 cm in front of the robot’s rotational
axis. Images were grabbed at a resolution of 640 × 480
pixels. A circular shaped cover on top of the mirror
prevented light entering directly into the lens without
reflexion from the mirror. The illumination of the room
was kept constant for all of the training and tests.

Figure 1: Pioneer robot with omni-directional camera sur-

rounded by 15 red obstacles

2.2 Collection of training data

Training data were collected by random exploration.
The goal was to record the changing images induced by
a given motor command. The robot was put within a
circle with an inner diameter of 180 ± 2 cm formed by
red bricks (Fig. 1). A random velocity was chosen for
the left and right side of wheels individually (vL and vR).
The velocities ranged from −60 mm/sec to 60 mm/sec in
steps of 20 mm/sec. The combination with both veloc-

1A DFK 4303/P camera and a Pentax TS2V314A lens were

used.



Figure 2: Panoramic vision system

ities being zero was discarded. After a set of velocities
was chosen, the robot maintained the given speed. Ev-
ery two seconds, an image was recorded from the camera
(Fig. 3) and stored. Recording started after guarantee-
ing the robot a one second acceleration phase. The series
lasted up to a maximum of six shots (five 2 sec intervals)
or until the robot got too close to one of the obstacles
(this was determined with the help of the same kind of
image preprocessing as described in section 2.4). In the
first case, a new combination of velocities was chosen
as above, and a new recording series started. In the
latter case, the robot was either allowed to go only for-
ward or backward, depending on if the obstacle was in
the back or front, respectively. Forward movements were
chosen randomly from a subset that fulfills vLvR ≥ 0 and
vL + vR > 0. Backward movements were chosen in an
analogue way (here vL + vR < 0). This training scheme
would result in more forward and backward movements
vs. rotational movements (which fulfill vLvR < 0) be-
cause when the robot was next to the obstacles it was
not allowed to do turns. Therefore, when rotation was
possible, the rotational movements were chosen with a
higher probability to adjust toward a balanced distribu-
tion of velocity combinations.

The actual wheel velocity was recorded during the 2
sec intervals. If it deviated by more than 10 mm/sec from
the given value the series was stopped, and the interval’s
was data discarded. After that, a new series started, as
above. The robot was able to pursue this kind of random
exploration automatically without getting into physical
contact with any obstacle.

Totally, 5466 intervals with 6808 images were
recorded. The velocities were roughly evenly distributed
(Fig. 4). There was a slight dominance for straight

Figure 3: Image as seen through the mirror (part of the train-

ing set)

movements (vL = vR) and a lack for combinations like
vL = 0 and vR = 20 mm/sec. The reason is that the
front and back wheels are connected by a chain, mak-
ing the robot occasionally stick to the floor during slow
turns.
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Figure 4: Distribution of velocities vL and vR, values in

mm/s. Frequency values range from 0 (black) to 200 (white)

2.3 Collection of test data

Test data for evaluating the anticipation performance
were collected separately. A slightly different random
exploration scheme was used. The goal was to get ran-
dom movement sequences instead of series with a con-
stant motor command. For each interval, a new random
velocity combination was used. A recording series con-
sisted of eight 2 sec intervals starting from zero velocity.
The first interval was discarded, thus leaving seven inter-
vals each under identical conditions. The wheel velocity
was monitored in the last 0.7 sec of each interval. If



its mean value deviated by more then 10 mm/sec from
the given value the whole recording series was discarded.
Therefore, the limited acceleration forced us to make the
random choice of velocities slightly dependent on the pre-
vious choice. Absolute velocity changes for each wheel
by 80 mm/sec or more were not allowed.

The choice of velocities in each interval further de-
pends on the encounters with obstacles. If the obstacle
was in the front the robot moved backward, and if it
was in the back the robot moved forward (same way
as done for the training data). Additionally, the robot
responded to an obstacle on the left or right side by turn-
ing the front of the robot toward the obstacles (choosing
|vL| > |vR|, vL > 0, and vR < 0 for obstacles on the right
side, and accordingly for the left side, changing roles of
vL and vR). This behavior made the robot facing the ob-
stacles with the front side, and thus, it was followed by a
backward movement. Due to the location of the mirror
in the frontal part of the robot (see Fig. 1), the bottom
part of obstacles close to the rear part of the robot were
occluded. Thus, this required to keep the back-side at a
greater distance to the obstacles.

Totally, 138 series were recorded, with a total of 966
intervals and 1104 images.

2.4 Image processing

It proved to be impossible to use the original visual infor-
mation in the training for the following reasons. First,
the dimensionality is too high, and second, the pixels
in the image change too rapidly. Therefore, the image
was preprocessed to detect only a special class of objects
and extract only a visual distance information in a few
sectors. Image processing contained the following steps:

First, a contrast mechanism enhanced red objects (R−
(G+B)/2). The result was smoothened with a binomial
filter. Then, a threshold function was applied on all pixel
values. In the resulting image, the red obstacles appear
as white region on an otherwise black background (Fig.
5).

In 10 sectors (36◦ each), the distance from the center
of the robot (within the image) to the closest object was
determined (Fig. 5). These 10 distance values form the
final representation of the sensory input to be processed
by the network (Fig. 6).

The ‘motor commands’ vL and vR together with two
corresponding image representations (as in Fig. 6) from
two consecutive recordings (2 sec apart) form one train-
ing pattern. Each pattern is therefore a 22-dimensional
vector. Before network training, the set of patterns is
normalized to have zero mean and unit variance.

2.5 Forward model network

The basic ingredient of our network architecture is a for-
ward model. It gets as input the sensory information

Figure 5: Distance information in 10 sectors derived from the

camera image. Here, the data are taken from the image in

Fig. 3
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Figure 6: Visual distance in 10 sectors for the situation in

Fig. 5

(Fig. 6) of one time step and the motor command con-
sisting of the velocities vL and vR, and it predicts the
sensory information of the next time step. Training data
were collected as described in section 2.2.

To anticipate future sensory information beyond 2 sec,
we feed the sensory output back into the sensory input
(Fig. 7). This feedback completely overwrites the pre-
vious input. In each time step, the corresponding motor
command M of the sequence is fed into the network.
Thus, for illustration it seems more intuitive to replace
the feedback by a chain of identical forward models (Fig.
8).

As a forward model we used an MLP with one hid-
den layer. The network’s activation functions were the
identity on input and output, and the sigmoidal func-
tion in the hidden layer. The MLP had 12 input neu-
rons (two velocity values and the 10 sector values) and
10 output neurons (10 sector values). The hidden layer
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Figure 7: Forward model with feedback loop. The model

maps the sensory information Ii to If in the context of the

motor command M
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Figure 8: Concatenated chain of forward models. The sen-

sory output of link t is the sensory input of link t + 1

comprises 15 hidden units. This number seemed to be
a good compromise between recall speed and accuracy.
Higher numbers did not improve the performance notice-
ably. The network was trained on 5466 patterns with
3000 epochs of resilient propagation (RPROP) (Ried-
miller and Braun, 1993).

The performance of anticipation was evaluated about
the squared distance (squared error E2) between the out-
put o of a chain with n links and the real sensory infor-
mation r after n 2 sec intervals,

E2 =

10∑

i=1

(oi − ri)
2 . (1)

2.6 Goal-directed movements

The task in the planning of goal-directed movements is
to find a series of motor commands (here velocity combi-
nations) such that the final sensory information matches
the desired value. Here, we treat this problem as an
optimization task. The function to be optimized is the
squared error between anticipated and desired goal. The
free parameters are the velocities vL and vR for each time
step (link in the chain).

We applied two different optimization methods, simu-
lated annealing and Powell’s method from the Numerical
Recipes code (Press, 1992). The first is more suited to

find a global minimum, whereas the second might be
caught in a local minimum.

Simulated annealing is a stochastic method for search-
ing the minimum value, occasionally allowing jumps to
higher function values. The probability of these jumps
is given by the Boltzmann distribution. The tempera-
ture parameter of the distribution is slowly reduced dur-
ing simulation time according to an annealing scheme.
Here, we used an implementation (Carter Jr., 1994) in-
corporating a scheme called ‘Fast Simulated Annealing’
(Szu and Hartley, 1987). Further, this implementation
includes at the beginning an increase in the temperature
to a point where a large jump in the function value oc-
curs, and only then starts decreasing the temperature.
We used the default parameters given in the implemen-
tation, except for the learning rate, which was set to 0.1,
and at each temperature value the number of random
steps, which was set to 20 times the number of free pa-
rameters. Random numbers were generated using the
ran1 code from the Numerical Recipes (Press, 1992).

Powell’s method is based on conjugate directions, but
does not need the evaluation of a gradient. We used the
parameters as given in the Numerical Recipes (Press,
1992). The fractional tolerance of the function value
was set to 10−4.

Both optimization methods were initialized by setting
all velocities to zero.

The treatment of the goal-directed movement as an
optimization problem allows us to add penalty terms to
the squared error to restrict the possible range of solu-
tions. The choice of velocities beyond the range ±60
mm/sec, used for training, was prohibited by punishing
velocities outside this range with an additional term in
the cost function. This was necessary because otherwise
for goals out of the reach of one interval, the method
could produce larger velocities as solutions for which no
examples were available in the training set - there is no
guarantee that the extrapolation of sensory predictions
found by the network for these velocities are correct.
Further, a penalty term was added to velocity series re-
sulting in robot positions too close to the obstacles.

The above solution assumes a given number of chain
links. Since the appropriate number of links - which
corresponds to the duration of the movement sequence
- is not known beforehand, we start with one link and
increase the number of links in the optimization pro-
cess. In each optimization step, we solve the optimiza-
tion problem and test the optimization criterion. If the
criterion is not yet met, the number of links is increased
by one and the optimization is restarted (from zero ve-
locities). This is repeated, until the anticipated sensory
state matches the desired state (within 0.5 pixels - the
resolution limit).

In our experiments, the goal state was not the com-
plete sensory information, as in (1), but only the value



tk in a predefined sector k. Thus, the squared error to
be optimized is E2 = (ok − tk)

2, with ok equal to the
predicted output in sector k.

2.7 Mental transformation

In the mental transformation task the robot has to assess
whether it is standing in the center of the circle. In
Fig. 3, the robot is roughly in the middle of the circle,
but apparently this cannot be decided from the image
representation (Fig. 6). The reason for this asymmetry
is that the center of the robot differs from the optical
axis of the camera.

Thus, instead of deciding the above question with pure
image processing, we propose a different strategy. Af-
ter observing the current image, the robot simulates a
left and a right turn (around its rotational axis, i.e.,
vL = −vR), and anticipates the effect of these move-
ments on the image representation. From the current
position the robot simulated five rotational steps (2 sec
each) to the left with the velocity vL = −40 mm/sec
and vR = 40 mm/sec, and, also from the current posi-
tion, five steps to the right at the opposite velocity. Five
steps at this speed corresponded to a rotation of 72◦.
Since our environment always contained a full circle, it
was not necessary to cover the entire 360◦ in the men-
tal simulation. Then, the values of the frontal sector for
the different representations were compared (altogether
11 values). If they had a variance of less than one pixel
squared it was concluded that they were the same, and
therefore, the position of the robot was in the center of
the circle (which is the only point having same distance
to the circle boundary in all directions).

3. Results

In this section, we first analyze the anticipation perfor-
mance achieved by the chain of MLPs. Second, this chain
is applied to goal-directed action-selection, and third it
is used in a mental transformation task. All results pre-
sented in the following were obtained by using the same
MLP as a forward model (see section 2.5).

3.1 Performance of anticipation

As we show in appendix A, the squared error is ex-
pected to increase linearly with the number of anticipa-
tion steps, under the assumption of randomly indepen-
dent errors for each step. This is not likely for series with
a constant motor command. Therefore, the test patterns
were collected during random walks. Figure 9 shows the
mean squared distance about the sensory values (dis-
tances in the 10 sectors) from the starting point of a
sequence (see section 2.3). A pure random walk would
result in a linear increase (same derivation as the one
leading to (6), see appendix A). But, as the solid curve

indicates, the squared distance increases stronger than
linear. This is due to the slight dependence of velocities,
as mentioned in section 2.3. The limited maximum range
for random walks within the circle of obstacles reduces
finally the increase in distance. For intermediate interval
numbers, starting after 1 up to 6, the squared distance
increases roughly linear (dashed line), as expected for
random movement sequences. Therefore, we will only
include the second to the sixth anticipation step for the
test of the theoretic prediction of the linear increase of
the squared error.
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Figure 9: The mean squared distance (in pixels squared) of

image sector values from the starting image representation

for increasing length of the test series

The performance of the anticipation on the 138 test
pattern series is shown in Fig. 10. The mean squared
error was below 2.4 pixels squared for all tested chain
lengths. This comes close to the image resolution. Start-
ing from the second to the sixth step the squared error
per sector increases linearly as predicted (a solid line is
fitted to the data).

The MLP network was only trained on points lying
on the manifold of valid sensory information embedded
in a 10-dimensional space. This manifold is only two-
dimensional (the robot has only two degrees of freedom,
namely the distance to the center of the circle and the
orientation of the robot). Therefore, the network’s be-
havior on points slightly outside the manifold is not clear.
Thus, we have a look at the effect of a small change in
the input of the forward model. Let f(x) be the transfor-
mation the MLP does on the input x. Figure 11 displays
the mean change of the output, f(x0 + e) − f(x0), as a
function of a small distortion e. The sensory input to
the network was taken from the collected test patterns.
The velocities were chosen randomly within the range of
the training values. For each test pattern, 100 e values
were chosen randomly, ranging in magnitude from 0.02
to 2 pixels. The slope s in the diagram was evaluated
with a linear fit, s = 0.47. It follows that the network
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reduces the magnitude of deviations from a valid input
to about one half. See the discussion in section 4.
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3.2 Goal-directed action selection

The goal for the robot is to move in a way that the sen-
sory value in a single given sector reaches a given value.
Figure 12 illustrates the result of two typical movements.
In example A, the goal was to make the sector in the
back right (number 4 in Fig. 5) attain a low value (e.g.
50 pixels). The robot moved backward in a rightward
curve. In example B, the front sector should attain a
low value. Thus, the robot moved from the middle of
the circle straight toward the obstacles.

To test the performance quantitatively, a random se-
ries of goals was chosen. A run consisted of choosing a

BA

Figure 12: Typical goal-directed movements. In A, the goal

is to have a short distance to an obstacle in the back right

sector, and in B, in the front sector

goal and executing the resulting movement. The goal
sector was chosen among the 10 sectors, and its value
was chosen from the interval [50, 65]. With the given
shape of the robot and the obstacles, it was physically
possible for each sector to attain these values. At the
beginning of each run, an image was taken, which was
used as the starting point of the anticipation. At the end
of a run, another image was taken for comparison with
the desired goal. We did not change the position of the
robot between two consecutive runs. The robot did two
sequences including 50 runs. At the beginning of each
sequence the robot was placed in the middle of the cir-
cle. This was done to increase the variety of movements,
because during a sequence the robot happened to spend
most of its time near the obstacles. Table 1 shows the
result of these tests. Collisions with the obstacles during
the test runs did not occur.

Table 1: The result of 100 goal-directed movements for each

optimization method is shown

Optimization method: Sim. Anneal. Powell

Found solution: 99% 96%
Exact hits: 18% 15%
Close within one pixel: 41% 46%
Closer to goal: 85% 83%
Right direction: 91% 91%
Mean squared error/link: 4.4 2.6
Mean number of links: 2.8 2.5

The two optimization methods gave very similar re-
sults. In almost all trials both optimization methods
found a solution (96 to 99%). In 15 to 18% of the trials
the final sector value matched exactly the desired value,
and in almost half of the trials it was within one pixel
of the desired value. In more than 80% of the trials, the
final sector value was closer to the desired than to the
initial value, and in more than 90% of trials, the final sec-
tor value was changed in the right direction (increasing
or decreasing).



3.3 Mental transformation

The robot was placed in 20 random positions (concen-
trated in the center) with random orientation. For each
position the robot had to decide, with the simulation
strategy described in section 2.7, if it is standing in the
middle of the circle. Figure 13 shows the result of this
classification. Among the positions that were classified
as center, the maximum distance to the center was 10
cm.

Figure 13: The performance based on mental transformation

for detecting the center of the circle. Markers indicate po-

sition of the robot’s rotational axis and direction the robot

was facing. Markers surrounded by a circle represent trials

in which the position was classified as center. The obstacle

circle shown is the same as in Fig. 1

4. Discussion

Goal-directed motion planning requires a search in a
high-dimensional motor space defined by a sequence of
movements. Nothing is known about the structure of
the optimization function defined over this space. The
fact that Powell’s method, which is a local minimization
method, showed a similar performance than simulated
annealing suggests that the presented task does not pro-
vide many local minima that are not global. Whether
other environments have similar properties is not known.

Mental transformation could be used to judge the
physical properties of the center position. No motor
commands needed to be executed (this is not possible
with the use of context layers (Tani, 1996)). No extra
training, especially no teacher, was necessary to achieve
a successful detection of the center of the circle. The
maximum distance of a location, classified as center, to
the real center (10 cm) is low compared to the circle di-
ameter (180 cm), and to the length of the robot (40 cm).
The remaining inaccuracy might be attributed to predic-

tion errors, and to deviations from perfect symmetry in
the circle of obstacles.

Distance comparisons in our mental transformation
task were solely based on the compact image represen-
tation. Alternatively, given the demonstrated perfor-
mance of the anticipation, the distance could be readily
obtained about the time the robot needs to reach an ob-
stacle with a constant straight forward movement. The
time could be obtained with the same mental simulation
as done for the rotational movements. This alternative
was not chosen in the presented paper because of effi-
ciency. First, the image representation was enough to
tell if two distances are the same. Second, an additional
simulation of a straight movement would add more er-
rors. On the one side, if a high wheel velocity would
have been chosen then the time resolution would have
been poor because of the few 2 sec intervals. On the
other side, a low wheel velocity results in many steps,
and therefore, it leads to a higher prediction error (see
the linear increase in squared error).

The overall performance was limited by mainly two
technical deficiencies. First, the image resolution in the
region showing the obstacles was low, about 140 pixels
in diameter. This could be improved by using a lens
with a smaller viewing angle, or a mirror with a view-
ing range more constrained to the neighborhood of the
robot. Second, the robot did not very accurately re-
produce the given wheel velocities. This problem was
avoided in the collection of training and test sets by dis-
carding inappropriate movements. However, we could
not avoid it during the execution of the goal-directed
movements. That explains the higher squared errors oc-
curring there. An improvement would be a robot using
only two driven wheels and caster wheels, which does
turns on a floor more easily.

The presented tasks depend on the quality of predic-
tion. Appendix A provides an estimation of the error
accumulation. It relies on the assumption that a small
deviation from a given point does not change the direc-
tion of the transformation. This seems plausible after
comparing the size of the anticipation error - below 2.4
pixels squared (see Fig. 10) - with the range of sector
values in Fig. 6. However, a test, as done for the MLP
network (see Fig. 11) to reveal the effect of a small de-
viation in starting position, could not be done since the
true transformation is unknown, and the training pat-
terns do not lie dense enough to serve as a substitute.

In Fig. 10, the squared error grows at a smaller rate
than expected with increasing chain length n, when com-
pared to the squared error of a single step. According to
(6) the slope should be the squared error of a single step.
This discrepancy might be explained by considering that
the 10-dimensional sensory data lie on a two-dimensional
manifold. Thus, for a single anticipation step, errors
could point in all 10 dimensions. But, since the an-



ticipated states move only within the two-dimensional
manifold, there is an increased chance for error compen-
sation (as illustrated in Fig. 14). This works only if
the network maps data outside its training domain onto
the two-dimensional manifold (or close to) - which is not
a guaranteed feature. But, luckily our network showed
this behavior. The MLP decreases the distance to the
manifold (see Fig. 11). To test the above idea, we com-
puted the percentage of improvements in squared error
during the anticipation series. The resulting value of
45% is much higher as expected for a random walk in 10
dimensions, and therefore supports our argument.

x

z

y

A

B

C
manifold

Figure 14: Compensation of the error in two prediction steps.

The low dimensional data-manifold constraints the position

of point C

The presented anticipation method relies on the com-
plete current sensory information given. Therefore, the
method could not cope with occluded vision. But, there
is a solution to this problem. Given a partially occluded
image, an association network model could be used to
restore the complete sensory representation. In a pre-
vious study, we developed a model capable of this task
(Hoffmann and Möller, 2003).

5. Conclusions and future work

Although the experimental setup used in our experi-
ments is very simple and widely artificial, the results
demonstrate that forward models can be used for both
planning of goal-directed actions and mental transfor-
mation.

The agent learns from the interaction with the envi-
ronment, no teacher is necessary. As a result, it obtains
an internal sensorimotor model. This model is then ap-
plied to interpret sensory information and to select ac-
tions leading to a desired goal. An amalgamation of
sensor processing and motor control might overcome the
shortcomings of ‘representationalist’ approaches to vi-
sual perception, which, in contrast, restrict perceptual
processes to the sensory domain (see Möller (1999)).
We suggest that a sensorimotor approach as the one de-
scribed in this work could explain spatial perceptual ca-
pabilities like the interpretation of the shape and the

physical properties of objects or, as shown above, per-
ceptual judgments of the spatial relation to objects.

We presented only a first simple example, but the ap-
proach offers extensions for future work:

• Obstacles arranged in a straight line could be de-
tected based on mental simulating of straight move-
ments.

• The robot could also learn a different environment
like a triangle instead of a circle. It could be tested
how well the model generalizes, for example, tackling
the question if the robot can also operate in a square
if it was only trained in circles and triangles.

• The above extensions will still work without the use
of memory. But, we are also thinking of more com-
plex mobile robot tasks, like detecting a dead-end
based on internal simulation. Here, not all visual in-
formation will be available at any time.
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A Estimate of error accumulation

We will show that the expectation value of the squared
error of the anticipated sensor input only increases lin-
early with the number of chain links. Let e be the error
of the feed-forward output of a single link. e is a vector
with one component for each output neuron. We as-
sume that the probability distribution of this error does
not depend on the input of the network. Thus, all errors
are independent of each other. Further, we assume that
the error for each output neuron has zero mean and the
same standard deviation σ.

On this basis, we compute the expectation value of
the squared error. The total error of the chain output
is the sum of the errors of the outputs of each link. To
illustrate this, think of each correct transformation at
one link as a line in a d-dimensional space, with d equal
to the number of output neurons (Fig. 15).

A line connects an input point with an output point
(of the transformation). The error at link i can be drawn
as an arrow ei at the end of a line (output point). This
will result in a different starting point for the next line.
If the error is small and the transformation function suf-
ficiently smooth we can approximate that the displace-
ment of the starting point does not change the direction
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Figure 15: Error accumulation in a feed-forward chain. Each

solid black line is the correct transformation for one link.

The dashed black lines are the correct transformations for a

slightly different starting point

and length of the next line, which would be then the
correct transformation at the new starting point. Thus,
the displacement E of the final point is the sum of the
vectorial errors of each stage. Therefore, given n links,
the total error E can be written as

E = |

n∑

i=1

ei| . (2)

We want to compute the expectation value of E2,

< E2 >=< (

n∑

i=1

ei)
2 > . (3)

Doing the square operation on the sum gives

< E2 >=<
∑

i

e
T
i ei +

∑

i,j 6=i

e
T
i ej > , (4)

and using the linear property of the expectation value
results in

< E2 > =
∑

i

< e
T
i ei > +

∑

i,j 6=i

< e
T
i ej >

=
∑

i

< e
T
i ei > . (5)

The last term vanishes because ei and ej are indepen-
dent random variables, for i 6= j, and each variable has
zero mean. The remainder is a sum over the variances
for each link and dimension. Therefore,

< E2 >= ndσ2 . (6)

Thus, the expectation value of the squared error in-
creases only linearly with the chain length.
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