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We provide a general approach for learning robotic
movements from human demonstration. To represent a
recorded movement, a non-linear differential equation is
adapted such that it reproduces this movement. Based on
this representation, we build a library of movements by
labeling each recorded movement according to task and
context (e.g., grasping, placing, and releasing). Our dif-
ferential equation is formed such that generalization can
be achieved simply by adapting a start and a goal pa-
rameter in the equation to the desired position values of
a movement. The feasibility of our approach is demon-
strated with the Sarcos slave robot arm; the robot pours
water into several cups after we demonstrated the move-
ment for one cup.

Humanoid robots assisting humans can become wide-
spread only if they are easy to program. Easy program-
ming might be achieved through learning from demonstra-
tion [1]. A human movement is recorded and later repro-
duced by a robot. Three challenges need to be mastered
for this imitation: the correspondence problem, general-
ization, and robustness against perturbation.

The correspondence problem means that links and
joints between human and robot may not match. Gen-
eralization is required because we cannot demonstrate ev-
ery single movement that the robot is supposed to make.
Learning by demonstration is feasible only if a demon-
strated movement can be generalized to other contexts,
like different goal positions. Finally, we need robust-
ness against perturbation. Replaying exactly an observed
movement is unrealistic in a dynamic environment, in
which obstacles may appear suddenly.

To address these issues, we present a model that is
based on the dynamic movement primitive (DMP) frame-
work [2, 3]. In this framework, any recorded movement can
be represented with a set of differential equations. Rep-
resenting a movement with a differential equation has the
advantage that a perturbance can be automatically cor-
rected for by the dynamics of the system; this behavior
addresses the above mentioned robustness. Furthermore,
the equations are formulated in a way that adaptation to
a new goal is achieved by simply changing a goal param-
eter. This characteristic allows generalization. Here, we
will present a new version of the dynamic equations with
improved adaptation to goal changes.

In the present work, we use the dynamic movement
primitives to represent a movement trajectory in end-
effector space; thus, we address the above-mentioned cor-
respondence problem. In our robot demonstration, we use
standard inverse kinematics to map the end-effector po-
sition and gripper orientation onto the appropriate joint
angles.

To deal with complex motion, the above framework

can be used to build a library of movement primitives
out of which the complex motion can be composed by
sequencing. For example, the library may contain a
grasping, placing, and releasing motion. Each of these
movements is recorded from a human demonstrator, rep-
resented by a differential equation, and labeled accord-
ingly. For example, to move an object on a table, a
grasping-placing-releasing sequence is required, and the
corresponding primitives are recalled from the library.
Due to the generalization ability of each dynamic move-
ment primitive, an object may be placed between two
arbitrary positions on the table based solely on the three
demonstrated movements.

Dynamic movement primitives

Dynamic movement primitives can be used to generate
discrete and rhythmic movements [2, 3]. Here, we focus
on discrete movements and present a new variant of the
equations. A movement is generated by integrating the
following set of differential equations (which we will refer
to as ‘transformation system’):
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where x and v are position and velocity of the system;
zo and g are the start and goal position; 7 is a temporal
scaling factor; K and D are constants; D is chosen such
that the system is critically damped, and f is a non-linear
function that can be adapted to allow the generation of
arbitrary complex movements. Equation (1) is motivated
from human behavioral data and leg force fields observed
in frog after stimulating the spinal cord [4].
The non-linear function is defined as
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where ; are Gaussian basis functions, ;(f) =
exp(—h;(0 — ¢;)?) with center ¢; and width h;, and w;
are adjustable weights. The function f does not directly
depend on time; instead, it depends on a phase variable
0, which goes from 1 towards 0 during a movement and is
obtained by the equation

f(0) =

0 =—ab . (4)
where « is a pre-defined constant.

To learn a movement from demonstration, first, a
movement z(t) is recorded and its derivatives v(t) and
0(t) are computed for each time step ¢. Second, f(t) is
computed based on (1). Third, (4) is integrated and 6(¢)
evaluated. Using these arrays, we find the weights w; in



(3) by linear regression, which can be solved efficiently.
For many-dimensional movements, we have a transforma-
tion system for each dimension and, for each, learn the
weights separately. A learned movement can be general-
ized to new targets by changing the variable g. This goal
may change also online during a movement.

Different from previous formulations of DMP is the
transformation system (1). The new formulation fixes a
problem with the original DMP: if start and goal position,
zo and g, of a movement were the same, then the system
remained at xg. Furthermore, if g—xq were close to zero, a
small change in g would lead to huge accelerations, which
can break the limits of a robot (Fig. 1). The modified
form solves these problems.

Fig. 1: Comparison of goal adaptation between old (Left)
and new (Right) DMP formulation in operational space (z,y).
The same original movement (solid line) and goals are used
The dashed lines show the results of

changing the goal g for the entire movement.

for both formulations.

Robot experiment

We demonstrate the utility of our framework in a robot
demonstration of serving water (Fig. 2). The single parts
of the movement (grasping, pouring, retreating bottle, and
releasing) are pre-recorded from a human demonstrator.
Afterwards, each of these parts is represented by our dif-
ferential equation. The equation describes the end-effector

position and orientation of the gripper. By appropriately
sequencing these movement parts, the robot served wa-
ter into three cups. It could generalize to different cup
positions simply through changing the goal position and
orientation for the pouring-movement primitive.

Conclusions

This article extends the approach of dynamic movement
primitives to sequential movements, task-space control,
and improved generalization to new goals. Semantic infor-
mation was added to the movement primitives, such that
they encode object-oriented action. We demonstrated the
feasibility of our approach in an imitation learning setting,
where a robot learned to serve water and could generalize
this task to novel situations.
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Fig. 2: Serving water with the Sarcos slave arm. The first row shows the reproduction of a demonstrated movement. The

second row shows the generalization to a new cup position.



