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Abstract
We present a computational model of grasping of non-fixated (extrafoveal)

target objects which is implemented on a robot setup, consisting of a robot
arm with cameras and gripper. This model is based on the premotor theory
of attention (Rizzolatti et al., 1994) which states that spatial attention is a
consequence of the preparation of goal-directed, spatially coded movements
(especially saccadic eye movements). In our model, we add the hypothesis
that saccade planning is accompanied by the prediction of the retinal images
after the saccade. The foveal region of these predicted images can be used to
determine the orientation and shape of objects at the target location of the
attention shift. This information is necessary for precise grasping. Our model
consists of a saccade controller for target fixation, a visual forward model for
the prediction of retinal images, and an arm controller which generates arm
postures for grasping. We compare the precision of the robotic model in differ-
ent task conditions, among them grasping (1) towards fixated target objects
using the actual retinal images, (2) towards non-fixated target objects using
visual prediction, and (3) towards non-fixated target objects without visual
prediction. The first and second setting result in good grasping performance,
while the third setting causes considerable errors of the gripper orientation,
demonstrating that visual prediction might be an important component of
eye-hand coordination. Finally, based on the present study we argue that the
use of robots is a valuable research methodology within psychology.
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1 Introduction

In everyday life, reaching and grasping movements are mainly carried out under
visual control. The most important information about the position and shape of
target objects is obtained from accompanying eye movements and retinal activation.
A considerable amount of research adresses the question how eye and arm movements
are coordinated and which information is used at which stage of motor planning and
execution (e.g., Bekkering and Sailer, 2002; Frens and Erkelens, 1991; Horstmann
and Hoffmann, 2005; Mather and Fisk, 1985; Neggers and Bekkering, 2000; Prablanc
et al., 1979). Experimental studies show that saccades for target fixation usually
precede arm movements (Abrams et al., 1990; Neggers and Bekkering, 1999; Vercher
et al., 1994). Even when the onset time of eye and arm movements is the same, eye
movements are finished more rapidly, providing the eye orientation as input for the
completion of the arm movement. Nevertheless, as everyday experience shows, it is
possible for humans to reach for and grasp objects while the saccade to the target is
suppressed. But this ability comes at a price: Several studies have shown that the
accuracy of limb movements suffers in such a setting (Abrams et al., 1990; Mather
and Fisk, 1985; Prablanc et al., 1979; Vercher et al., 1994). In conclusion, grasping of
and reaching to both fixated and to non-fixated target objects is possible, although
the former allows for more precise arm and hand movements.

In a previous study (Hoffmann et al., 2005), we explored the necessary coordi-
nate transforms for both settings, and presented a computational model for grasping
movements with a robot arm. In the present work, we concentrate on the senso-
rimotor processing for grasping of non-fixated target objects which are projected
on the extrafoveal region of the retina. Our starting point is the premotor theory
of attention (Rizzolatti et al., 1994) which states that spatial attention is a conse-
quence of the preparation of goal-directed, spatially coded movements. Because the
neural mechanisms for foveal vision in primates and humans appear to be highly
developed, oculomotor maps coding space for eye movements play a central role in
selective attention according to this theory. Experimental evidence for the close
coupling of saccade preparation and visual attention has been found in several stud-
ies, for example in the work by Deubel and Schneider (1996) and Irwin and Gordon
(1998). Moreover, there is a considerable overlap between frontoparietal control
structures which are activated during covert shifts of visual attention and during
saccade preparation, as functional imaging studies have shown (Beauchamp et al.,
2001; Nobre et al., 2000; Perry and Zeki, 2000). Muggleton et al. (2003) were able
to modulate attentionally guided performance in visual search tasks by transcranial
magnetic stimulation over the frontal eye fields. In summary, there is strong experi-
mental evidence for the link between visual attention and saccade preparation. The
link between manual response preparation and shifts of spatial attention has been
less convincing, but several studies (Baldauf et al., 2006; Deubel et al., 1998; Eimer
et al., 2005, 2006; Schiegg et al., 2003) provide support for the claim that covert
preparation of manual responses is linked to shifts of spatial attention as well.

We propose a computational model of grasping of extrafoveal targets which is
implemented on a robot setup. This model is based on the premotor theory of
attention and adds one specific hypothesis: Attention shifts caused by saccade plan-
ning imply a prediction of the retinal images after the saccade. The foveal region
of these predicted retinal images is required to determine movement parameters for

2



the manual interaction with objects at the target location of the attention shift.
Without visual prediction, grasping towards extrafoveal target objects is difficult

because of the heavy distortions found in retinal images (with the term “retinal
image” we refer here to the activation pattern of receptors in the retina). These
distortions have at least three distinct sources. First, the retina has approximately
the shape of a half-sphere (Atchinson and Smith, 2000). This brings about that the
projection of one and the same object on the retina has a different shape, depending
on its position relative to the optical axis of the eye. Second, the lens system of the
eye suffers from chromatic and monochromatic aberrations in various forms, causing
varying image quality (focus, shape of point spread function) throughout the retina
(Atchinson and Smith, 2000). And third, the distribution of light receptors (rods
and cones) on the retina is non-uniform. Cones are used for color vision under strong
light, rods for monochromatic vision under low light levels. The cones are densely
packed in the fovea (around 0 degrees eccentricity) with rapidly decreasing density
towards the periphery of the eye. The density of rods decreases much slower towards
the periphery but they are completely absent from the fovea (for illustration, see
for example Fig. 6.12 in McIlwain, 1996, p. 93). Because of the non-uniform sensor
distribution, the pattern of rod and cone activation caused by the projection of
a certain object on the retina varies considerably with the retinal position of this
projection. This non-uniformity is also found in the retinotopic maps in the visual
cortex (Mallot, 1985).

Considering this background information, a grasping task in which the eyes do
not fixate the target object poses a special difficulty because the object-related reti-
nal activation differs depending on the object’s position relative to the eyes. Any
mechanism which extracts the necessary information for proper grasping (e.g., ob-
ject orientation) from this activation pattern has be tuned to the exact position
on the retina onto which the object is projected. This would cause considerable
computational overhead and the need to learn complex input-output relationships
between retinal activation and grasping parameters. To avoid this overhead, the
system could predict what the foveal representation of the target object would look
like after a successful saccade, and use a much simpler sensorimotor model which
takes just the predicted foveal activation as input to generate the grasping parame-
ters as output. This model could be the same sensorimotor model as the one which
is applied to fixated target objects. Thus, visual prediction would allow us to apply
one and the same model for the sensorimotor processing for both grasping of foveal
and extrafoveal target objects. We hypothesize that such a prediction actually takes
place when humans and other primates grasp towards extrafoveal targets. In ac-
cordance with the premotor theory of attention, the first step would be that spatial
attention is shifted towards the object by preparing the motor command for making
a saccade towards this object (but this saccade is never carried out). The second
step is to use this saccadic motor command as input for a visual forward model
to generate the predicted foveal representation of the target object. In the third
step, the planned new eye position and the predicted foveal representation of the
target object are provided as input for the sensorimotor model which associates this
information with an appropriate motor command for grasping.

For the visual prediction, we use a forward model (FM). We do not make strong
assumptions about the visual representation underlying the prediction. In our robot
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implementation, the prediction takes place on the level of artificial “retinal images”
(see Sect. 4.1) which mimic roughly the cone distribution on the human retina (see
the right of Fig. 5 for a resolution plot). The important analogy to biological retinal
activation patterns is the fact that a target object appears in a different shape
depending on its location in the retinal image.

The anticipation of sensory consequences in the nervous system of biological or-
ganisms is supposed to be involved in several sensorimotor processes: First, many
motor actions rely on feedback control, but sensory feedback is generally too slow.
Here, the output of FMs can replace sensory feedback (Miall et al., 1993). Second,
FMs may be used in the planning process for complex motor actions (Tani, 1996).
Third, FMs can help to distinguish self-induced sensory effects (which are predicted)
from externally induced sensory effects (which stand out from the predicted back-
ground) (Blakemore et al., 2000). Fourth, it has been suggested that perception
might rely on the anticipation of the consequences of motor actions which could be
applied in the current situation; the anticipation would be accomplished by FMs
(Hoffmann and Möller, 2004; Hoffmann, 2007; Möller, 1999). In our model of grasp-
ing of extrafoveal targets, the prediction of visual data serves as a replacement for
sensory feedback and is used in the planning process for motor control (although it
is only a one-step “planning” for the generation of a single movement). Therefore,
the visual FM in this study contributes to the first and second of the above-listed
four applications of FMs.

The learning of adaptive visual FMs is a rather new field. It is difficult because
of the high dimensionality of visual data and because part of the output may be
non-predictable. In fields like robotics or artificial life, studies using FMs for motor
control focus mainly on navigation or obstacle avoidance tasks with mobile robots.
The sensory input to the FMs are rather low-dimensional data from distance sensors
or laser range finders (e.g.: Tani, 1996; Ziemke et al., 2005), optical flow fields (Gross
et al., 1999), or preprocessed visual data with only a few remaining dimensions
(Hoffmann and Möller, 2004). Only in a recent study by Hoffmann, a visual FM is
implemented which predicts images with a size of 40×40 pixels. It is used for distance
estimation and deadend recognition to demonstrate that perception by anticipation
actually works (the fourth function of FMs mentioned above) (Hoffmann, 2007). The
visual FM in the present study is an adaptation of the work by Schenck and Möller
(2007) where we proposed a learning algorithm for visual FMs which overcomes the
problems of high dimensionality and non-predictability.

In the following, the components of the overall model are explained in detail,
and it is described by which learning procedures they are acquired. Afterwards, the
final experiments and their results are described. The purpose of these experiments
is to show that a robot implementation of our model is actually capable of grasping
of extrafoveal targets. Moreover, we hypothesize that grasping of fixated targets
results in slightly better performance than grasping of extrafoveal targets, and that
grasping of extrafoveal targets without visual prediction results in low grasping
success, illustrating the need for a visual FM. These hypotheses are tested in our
experiments. In the discussion section, we will relate our robotic model to general
methodological issues regarding the use of robots in psychological research. We will
argue that our robotic approach demonstrates in multiple ways that robots are a
valuable research instrument within psychology.
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2 Overall System Architecture

2.1 Overview

Our model consists of three parts (see. Fig. 1). First, a saccade controller acquired
through an iterative learning procedure (Schenck and Möller, 2006); second, a visual
FM predicting retinal images (with decreasing image resolution towards the corners
in analogy to the sensor distribution on the human retina; Schenck and Möller, 2007);
and third, an arm controller for grasping movements which receives the output of
the saccade controller and the orientation of the target object as inputs (similar to
the controller presented by Hoffmann et al., 2005).

When the model is used for grasping of extrafoveal targets, a single trial starts
with the presentation of the grasping target, a red wooden block, at a random lo-
cation within the working space on a table surface. The cameras are in a random
posture. The saccade controller generates the necessary motor command for proper
fixation with the cameras, but this movement is not carried out, only the suggested
motor command is recorded as input for the visual FM and the arm controller. Af-
terwards, the visual FM predicts the retinal images after the (hypothetical) saccade.
From these predicted images, the orientation of the block is determined. Finally,
the arm controller uses both the saccadic motor command and the block orientation
in the predicted images as inputs to generate the grasping movement.

In the final experiments, the grasping performance of four different versions of
the robotic model is compared: (1) for grasping towards target objects which are
precisely fixated by a series of saccades, using the actual retinal images instead of
the predicted ones; (2) for grasping towards target objects which are fixated just
by one saccade, also using the actual retinal images instead of the predicted ones;
(3) for grasping towards non-fixated target objects using visual prediction; (4) for
grasping towards non-fixated target objects without visual prediction.

2.2 Setup

The experimental setup (see Fig. 9) consists of a robot arm with six rotational
degrees of freedom and two-finger gripper (PowerCube, Amtec Robotics). Except
in singularities, the inverse kinematics of the robot arm allows for eight different
solutions for every gripper position and orientation within the working range. In
practice, considering collisions of the robot arm with its environment or with itself,
usually only two or four different solutions are applicable. A table in front of the
robot arm is used to place target objects for grasping.

Moreover, a stereo camera head belongs to the setup. Each camera (Imaging
Source DFK 50H13) provides an RGB color image with a resolution of 320 × 240
pixels. The horizontal and vertical angles of view are 61.9 and 48.5 degrees, re-
spectively. Each camera is mounted on a pan-tilt unit (Directed Perception PTU
46 − 17.5) with two degrees of freedom. In this study, the valid range for the pan
angle is between −60.4 and 23.8 degrees, for the tilt angle between −42.9 and 21.4
degrees. In this range, the camera images always capture at least a small part of
the white table shown in Fig. 9 below the cameras and in front of the robot arm.

For the training of the saccade controller (Sect. 3) and the visual FM (Sect. 4),
not the real setup was used, but instead “virtual” camera movements were carried
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Figure 1: The overall system architecture. The main components of the model are a
saccade controller, a visual FM, and an arm controller (for details see text) (adapted
from Schenck and Möller, 2007, c© Springer).

out using an image database. This image database contains the camera images for
more than 120, 000 different camera positions within the above-mentioned pan/tilt
range. Instead of using the cameras directly, we retrieved the images from the
database. The recorded scene shows the white table with 56 colored wooden blocks
on its surface — 14 blocks each from the colors red, green, blue, and yellow (see
Fig. 3).

3 Saccade Controller

In primates and humans, saccades are fast eye movements for the fixation of in-
teresting target regions in the visual surroundings. After a successful saccade, the
target region is projected on the foveae of both eyes. The physiological and neural
mechanisms of saccade control have gained a lot of interest from psychology, biology,
and neurophysiology (for a comprehensive overview, see Leigh and Zee, 1999). In
computer science, especially in the field called “active vision”, research is centered
to a large extent on the development of technical solutions for artificial saccades of
robot camera heads (e.g., Klarquist and Bovik, 1998). Nevertheless, several studies
propose models of saccade generation which are closely related to neurophysiological
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Figure 2: Input and output of the saccade controller (adapted from Schenck and
Möller, 2007, c© Springer).

findings (Dean et al., 1994; Gancarz and Grossberg, 1999). In this area, which is
related to both robotics and biology, methods of adaptive saccade learning are of
special interest (Bruske et al., 1997; Pagel et al., 1998). In a previous study, we com-
pared different learning strategies for saccade control (Schenck and Möller, 2006).
In the present study, we use a similar saccade controller on the basis of a multi-layer
perceptron (MLP) (Rumelhart et al., 1986) which is trained by a strategy called
“continuous learning by averaging” (Schenck and Möller, 2006).

3.1 Controller input and output

The task of the saccade controller is to fixate target objects with both cameras
so that the target object is projected onto the center of both camera images. In
time step t, the saccade controller receives the current sensory state s

(t)
SAC as input,

composed of a kinesthetic and a visual part (see Fig. 2). The kinesthetic input

s
(t)
KIN consists of the current position of the cameras, defined by a conjoint pan-tilt

direction (pan, tilt), and a horizontal and vertical vergence value (verghor, vergvert).

The visual part s
(t)
VIS represents the position of the target object in the left and right

camera image relative to the image center: xleft, yleft, xright, yright. The motor output

m
(t)
SAC of the saccade controller is defined as change of the motor position. It consists

of four values: ∆pan, ∆tilt, ∆verghor, and ∆vergvert. The new position of the cameras

is computed as s
(t+1)
KIN = s

(t)
KIN + m

(t)
SAC, and the cameras are moved accordingly. All

sensory variables are scaled to the range [−1; 1], the motor output variables to the
range [−2; +2].

3.2 Image processing

The image processing is restricted to a central area of 213×213 pixels in each camera
image. For simplicity, in the following (throughout Sect. 3) the term “camera image”
refers to this cropped region. The image processing extracts the position of the target
object in the left and right camera image. Before any saccade, an appropriate target
object has to be selected, after the saccade, it has to be re-identified to evaluate the
success of the saccadic movement. In our setup, target objects are colored wooden
blocks (see Fig. 3). During target identification and re-identification, their centers
of mass are calculated via a color detection algorithm, finally yielding a list of red,
green, blue, and yellow object coordinates.

Before any saccade, one of the detected objects is chosen from either the left
or right camera image, depending on the current task. Afterwards, the matching
target object in the other camera image is identified by searching for the image
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camera
Right

camera
Left

Figure 3: Camera images (left column; the surroundings of the table are already
blanked) and salience images for red objects (right column) before a saccade. The se-
lected target is marked with a rectangle in the salience images. It has been identified
first in the right camera (bold rectangle); by a correlation approach, the correspond-
ing image region in the left camera has been found.

region with the highest local pixel intensity correlation. In this way, the target
object coordinates s

(t)
VIS =

(
x

(t)
left, y

(t)
left, x

(t)
right, y

(t)
right

)
are determined. After the saccade,

the target object is re-identified in both camera images by the same correlation
approach, providing the coordinates s

(t+1)
VIS =

(
x

(t+t)
left , y

(t+t)
left , x

(t+t)
right , y

(t+t)
right

)
.

3.3 Implementation

The saccade controller is implemented by an MLP. It has 8 inputs and four linear
output units (see also Fig. 2). The single hidden layer has four units with hyperbolic
tangent as activation function; in addition, the inputs are also directly connected to
the output layer (“shortcut connections”). In the beginning, the network weights
are initialized to random values, resulting in erratic output. The network is trained
by providing proper learning examples for weight adjustment as outlined in the
following section.

3.4 Learning by averaging

Like most motor learning tasks, saccade learning suffers from the problem of the
“missing teacher signal”. Whenever an incorrect motor command is carried out,
the resulting error is only measurable in the sensory domain. The motor error
and therefore the correct motor output remains unknown. In the literature, several
learning strategies are proposed to overcome this problem (e.g., Kuperstein, 1988;
Kawato, 1990; Jordan and Rumelhart, 1992). We suggested a new algorithm called
“continous learning by averaging” (CLbA) for the saccade learning task (Schenck
and Möller, 2004, 2006). Its basic idea is to search at random in the neighborhood
of the network output in motor space for saccades which are slightly better than
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Figure 4: Visual forward model (FM) (adapted from Schenck and Möller, 2007,
c© Springer).

the saccade produced by the controller network, and which bring the target object
closer to the center in both camera images. These improved saccades are used
as learning example for network adaptation. In the process of learning, over- and
undershoot saccades cancel each other out, resulting in more precise motor output
of the network. This “canceling out” only works because the MLP as function
approximator adapts to the average of the over- and undershoot saccades. Since
saccade learning is not a central aspect of the overall model for extrafoveal grasping,
we would like to refer the reader to a previous publication (Schenck and Möller, 2006)
for a more detailed description of the CLbA algorithm.

To quantify saccade precision in the following, we define a measure called “radial

target distance” as r = r(sVIS) = 1
2
√

2

(√
x2

left + y2
left +

√
x2

right + y2
right

)
, with r = 0.0

indicating a perfect saccade after which the center of mass of the target object is
projected exactly on the center of both camera images, and with r = 1.0 being the
worst value (as long as the target is not completely lost which is even worse). The
saccade controller network of this study was trained over 450 learning trials, the
average radial target distance over 50 test saccades amounted finally to r < 0.018.
In the course of these 450 learning trials, 4435 saccades were carried out.

4 Visual Forward Model

The task of a visual FM is to predict future visual sensory states. In the framework
of our robot setup, this means to predict what the camera images will look like after
a movement of the camera head. The input of a visual FM is the current image at
time step t and the motor command m

(t)
FM, the output is a prediction of the resulting

image in time t+1 (see Fig. 4). Learning of this input-output relationship is difficult
because of the high dimensionality of the image data, and because of the fact that
part of the future image may not be predictable at all.

In a previous study (Schenck and Möller, 2007), we suggested an algorithm for the
learning of visual FMs which is based on the idea of learning the mapping between
corresponding pixel positions in the images of time step t and t+1 instead of directly
predicting pixel intensities. Moreover, this algorithm is successful in identifying non-
predictable regions in the future image. In the following, this algorithm is described.
The description is an updated and abbreviated version of the presentation in Schenck
and Möller (2007).1

1The copyright of the original publication is held by Springer. The permission for the publication
of this modified version was kindly granted by Springer.
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Figure 5: Left: Retinal mapping for an image depicting a regular grid. Center:
Retinal mapping for a camera image. Right: Resolution of the artificial retinal
images depending on the distance from the image center. Resolution values are
standardized to a maximum of 1.0.

4.1 Retinal images

Instead of directly working with the camera images, we first apply a retinal mapping
to create the artificial retinal images which are discussed in the introduction. This
mapping maintains full image resolution in the image center, and decreases this
resolution progressively towards the corners. Fig. 5 shows the effect of this mapping
on an image depicting a regular grid and on a camera image (in the following,
throughout Sect. 4, the term camera image refers to a 240× 240 pixel region in the
center of the original camera image).

The mapping between camera and retinal images is specified in polar coordi-
nates. The origins of the coordinate systems are located at the image centers. They
are scaled in a way that in both images the maximum radius (along the horizon-
tal/vertical direction) amounts to 1.0. rR is the radius of a point in the retinal
image, rC is the radius of the corresponding point in the camera image, the angle of
the polar representation is kept constant. rC is computed by rC = λrγ

R + (1− λ)rR,
γ > 1, 0 ≤ λ ≤ 1. Here we use γ = 2.5 and λ = 0.8. The resolution of the final
retinal image is 69× 69 pixels.

4.2 Structure of the visual FM

The same visual FM works for both the left or the right camera of our setup. As
input, it receives I(t), the retinal image of time step t (also called input image in the

following), and the motor command m
(t)
FM = (∆pan, ∆tilt) for the repositioning of a

single camera.2 The output of the FM is Î(t+1), the predicted retinal image of time

2Because the pan and tilt axes cross in close vicinity to the nodal point of the camera-lens
system, the current camera position is not needed as input for the FM; for the same reason, depth
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Figure 6: Left: Mapping model (MM). Right: Validator model (VM) (for details
see text) (adapted from Schenck and Möller, 2007, c© Springer).

step t + 1 (also called output image in the following). While I(t) is an unmodified
retinal image, Î(t+1) is a center region with a size of 53× 53 pixels. This is necessary
to clip the black corners of the retinal image without valid information (see Fig. 5)
which are just a technical artifact.

The visual FM consists of a so-called “mapping model” (MM) and a “validator
model” (VM). Both are used to generate the output image. The mapping model

(MM) is depicted in Fig. 6: As input, it receives the motor command m
(t)
FM and the

location of a single pixel (xOut, yOut) of the output image; as output it estimates the
previous location (x̂In, ŷIn) of the corresponding pixel (or region) in the input image.
The overall output image is constructed by iterating through all of its pixels and
computing each pixel intensity as Î

(t+1)
(xOut,yOut)

= I
(t)

(x̂In,ŷIn)
(using bilinear interpolation).

Moreover, the validator model (VM) generates a signal v(xOut,yOut) indicating whether
it is possible at all for the MM to generate a valid output for the current input. It
predicts which pixels of the output image are at a position that does not correspond
to any pixel of the input image. This is necessary because even for small camera
movements parts of the output image are not present in the input image. In this way,
the overall FM (Fig. 4) is implemented by the combined application of a mapping
and a validator model.

4.3 Learning of the MM and VM

The basic idea of the learning algorithm for the MM can be outlined as follows for a
specific m

(t)
FM and (xOut, yOut): During learning, the motor command is carried out in

different environmental settings. Each time, both the actual input and output image
are known afterwards, thus the intensity I

(t+1)
(xOut,yOut)

is known as well. It is possible
to determine which of the pixels of the input image show a similar intensity. These
pixels are candidates for the original position (xIn, yIn) of the pixel (xOut, yOut) before
the movement. Over many trials, the pixel in the input image which matches most
often is the most likely candidate for (xIn, yIn) and therefore chosen as MM output
(x̂In, ŷIn). When none of the pixels matches often enough, the MM output is marked
as non-valid (output of the VM).

4.3.1 Grid of cumulator units

The input space of the MM and VM consists of four dimensions: ∆pan, ∆tilt, xOut,
and yOut. A four-dimensional grid P of points pijkl = (∆pan(i), ∆tilt(j), x

(k)
Out, y

(l)
Out) is

embedded in this space, with i, j = 1, .., 11 and k, l = 1, .., 13. ∆pan(i) and ∆tilt(j)

information is irrelevant for the prediction task.
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cover the range from −29 to +29 degrees with constant step size, while x
(k)
Out and y

(l)
Out

form an equally spaced rectangular grid covering the whole output image.
To each point pijkl, a so-called “cumulator unit” Cijkl is attached. Such a unit

is basically a single-band image with the same size as the input image. Thus,
the input image and the cumulator units have the same number of pixels in the
horizontal and vertical direction. Each “pixel” of a cumulator unit can hold any
non-negative integer value. They are used to accumulate and store the number
of matches between input and output image at their specific position during the
learning process.

4.3.2 Learning process

The goal of the learning process is to accumulate activations in the cumulator units.
At the beginning, all pixels of these units are set to zero. In each learning trial,
the pan-tilt unit is first moved into a random (pan, tilt) position. The input image
for the FM is recorded and processed. Afterwards, the algorithm iterates through
all points of the grid P, the corresponding motor command is executed (relative to
the initial random position), and the output image is generated from the camera
image after the movement. For each point pijkl, the intensity of the output image

at the coordinates (x
(k)
Out, y

(l)
Out) is compared to the intensities of all pixels (xIn, yIn) in

the current input image. Whenever the intensity difference (computed as Euclidean
distance in RGB color space) is below 3.5% of the overall intensity range, the value
of pixel (xIn, yIn) in cumulator unit Cijkl is increased by one.

In the present study, 100 trials were carried out, each with 11× 11× 13× 13 =
20449 iteration steps (size of the grid P). In each trial, the initial camera position
was varied, resulting in different input images.

4.3.3 Generating the MM and VM

After the cumulator units have been acquired in the learning process, raw versions
of the MM and VM can be created whose output is defined at the grid positions
pijkl in input space. The output (x̂In, ŷIn) of the MM at grid point pijkl are the
coordinates of the pixel with maximum intensity in the cumulator unit Cijkl. The
output v(xOut,yOut) of the VM at point pijkl is set to 1 (indicating a valid output of
the MM at this point) whenever the maximum pixel intensity in unit Cijkl is above
a certain threshold. Otherwise, v(xOut,yOut) is set to 0. The threshold is computed
as the product of the maximum pixel intensity of all cumulator units and a factor
equal to 0.41. This proved to be the value resulting in the most correct separation.

For illustration, Fig. 7 shows the cumulator units for the center pixel of the output
image for four different (∆pan, ∆tilt) positions. The larger the camera movement,
the more the intensity maximum in the respective cumulator unit vanishes until no
prediction is possible any longer (movement 4).

The output of the raw versions of the MM and the VM is only defined at the
grid points pijkl. To get the output in-between, function interpolation is necessary.
For this purpose, the raw versions of the MM and the VM were replaced by radial
basis function networks (RBFN) (Moody and Darken, 1989) in the final step of the
learning algorithm. These networks have the same input/output structure as the
MM and the VM, respectively (see Fig. 6). The training data for both networks was
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Figure 7: Cumulator units for the center pixel for four different (∆pan, ∆tilt) posi-
tions. All depicted cumulator units were normalized by the same scaling factor so
that a pixel value of zero corresponds to white and the overall maximum pixel value
to black (adapted and updated from Schenck and Möller, 2007, c© Springer).

generated from the output of the raw versions of the MM and the VM at the grid
points pijkl (overall, there are 11× 11× 13× 13 = 20449 grid points). For the MM
network, training data was restricted to the 10523 grid points with valid output (as
indicated by the raw version of the VM). For more details on the network training,
see Schenck and Möller (2007).

4.4 Results

The MM and VM network were used to implement the overall visual FM for pre-
dicting the output image. Especially, non-predictable regions of the output image
were marked by the VM network. The prediction works rather precise as shown
exemplary in Fig. 8. The actual and the predicted output image are compared for
four different motor commands (∆pan, ∆tilt) (camera movements to the lower right
of increasing length as in Fig. 7). Moreover, the region of each output image which
is marked as non-predictable by the VM is shown in black color in the third row
of images. The input image (the same for all four movements) is displayed as well.
Movement 1 is a zero movement. The actual and the predicted output image are
very similar and show the center region from the input image. Movements 2 and
3 are of increasing size. The non-predictable regions mask parts of the output im-
ages which have no correspondence in the input image. The center of the predicted
images is slightly blurred and distorted because the mapping generated by the MM
network has to enlarge a region of a few pixels in the input image to a much larger
area (especially for movement 3). Movement 4 is so large that the center of the out-
put image is non-predictable. Nevertheless, the small upper left part of the output
image which is predicted corresponds closely to the actual output.

5 Arm Controller

The purpose of the arm controller is to generate the motor command for the final
grasping movement. As input, it receives the orientation of the target object, a red
wooden block on the table surface (see Fig. 9), and the position of the cameras s

(t+1)
KIN
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Figure 8: Comparison of actual and predicted output images at four different
(∆pan, ∆tilt) positions (the same as in Fig. 7; for details see text) (adapted and
updated from Schenck and Möller, 2007, c© Springer).

Figure 9: Resting, pre-grasping and grasping posture (from left to right).

after a successful fixation movement towards the target object. The camera position
implicitly encodes the position of the red block. As output, the arm controller
produces two sets of joint angles, for the pre-grasping and the grasping posture.
The pre-grasping posture serves as via point for the robot arm when it moves from
its resting position to the final grasping position. This is necessary to avoid collisions
with the environment and with the block before it is grasped. Figure 9 shows the
resting, the pre-grasping, and the grasping posture for a single grasping trial. In a
perfect grasping movement, the approach direction of the gripper is perpendicular
to the table surface. Because of the geometry of the robot arm, this movement is
only possible over a restricted area of the table. Here, we use a rectangular region
of 380× 250 mm for the placement of the target objects.

5.1 Data preprocessing

The arm controller is implemented by a neural network algorithm called “NG-
PCA” (Hoffmann and Möller, 2003; Möller and Hoffmann, 2004) (details follow in
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Figure 10: Image processing to encode the block’s orientation. On the very left is
the block segment. In each column, the preprocessing steps for one compass filter
(top) are shown, the edge-image, the threshold image, and the sum of white pixels
in the threshold image (adapted from Hoffmann et al., 2005, c© Springer).

Sect. 5.3). To achieve maximum learning success with this algorithm, certain pre-
processing of the controller input and output is necessary. We use similar methods
as in the study by Hoffmann et al. (2005).

The visual input of the arm controller is the orientation of the red block. To
determine this orientation, the left retinal image after the successful fixation saccade
towards the target object is used as default (although this is later varied in the
experiments). A color filter is used to generate an image where the block appears
as single white segment on a completely black background. In the next step, four
compass filters enhance the edges in four different directions (0◦, 45◦, 90◦, and 135◦)
(see Fig. 10). After thresholding, the remaining pixels in each image are counted
to give a value for the distribution of edges in a given direction. The resulting four
values are normalized so that there sum yields 1.0. These normalized values form
a “compass filter histogram” which uniquely encodes the orientation of the block
independent of its size.

All postural variables (camera position, arm joint angles) are encoded by tun-
ing curves: A variable x is represented by the values of four Gaussian functions
fi(x) = exp(−(x− ci)

2/(2σ2)) whose centers ci are uniformly distributed within the
maximal range of the variable. σ equals the distance between two neighboring cen-
ters. Overall, there are 20 input values for the arm controller (4 compass filter values
and 4 × 4 values for the camera position), and 48 output values (2 arm postures
with 6× 4 values each).

5.2 Collection of training data

Each single training example for the arm controller network is collected in the fol-
lowing way (similar to the procedure suggested by Hoffmann et al., 2005): First,
a random block position and orientation on the table surface are generated. By
the analytical solution of the inverse kinematics of the robot arm, a corresponding
pre-grasping and grasping posture are determined. If the inverse kinematics yields
several applicable solutions, one of them is chosen at random. The robot arm is
moved to this position with the red block held by the gripper, and releases the red
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Figure 11: Recall by constrained subspace (for details see text) (adapted from Hoff-
mann et al., 2005, c© Springer).

block on arrival. Afterwards, the arm returns to its resting position. The saccade
controller from Sect. 3 is used to fixate the red block; to enhance precision, a sec-
ond corrective saccade is carried out if the radial target distance r is larger than
0.015 after the first saccade. Afterwards, the image of the left camera is recorded
and mapped to the retinal image. From the information which is gathered in this
sequence, a full learning example with input (camera position and block orienta-
tion) and output (pre-grasping and grasping posture) is constructed. This way of
collecting learning examples is a technical solution and not intended for biological
modeling.

Altogether, 3213 learning examples were collected. All input and output dimen-
sions were normalized to mean 0.0 and variance 1.0. The postural dimensions were
normalized before the encoding to tuning curve values.

5.3 Neural network algorithm

Since one of the possible solutions of the inverse kinematics is chosen at random,
the training data represents a one-to-many mapping. For this reason, function
approximator networks like MLPs are not suitable for the implementation of the
controller. This is a general problem found in many motor control tasks. Möller
and Hoffmann (2004) suggested so-called “abstract recurrent neural networks” as
solution. These networks consist of a set of hyperellipsoids in the sensorimotor
space which comprises both the input and output dimensions. The hyperellipsoids
describe the training data manifold with considerably fewer parameters than the
original training data contains.

To determine the center and shape of the hyperellipsoids, different algorithms
are suggested in the literature (for an overview, see Hoffmann, 2004). We applied
the NGPCA method by Möller and Hoffmann (2004). To recall data in such a
network after training, certain dimensions are defined as input dimensions. The
input data defines a constrained subspace. The hyperellipsoid with the smallest
normalized Mahalanobis distance to the constrained subspace is chosen. Then, on
this constraint, the point that is closest to the chosen ellipsoid gives the desired
output values. Figure 11 illustrates this process.

For the arm controller, we used a network consisting of 100 hyperellipsoids with
4 dimensions. From the collected 3213 learning examples, 2900 randomly selected
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examples were used for training (and 313 for the test set). 100, 000 learning iterations
were applied. After training, the arm controller showed the following performance
figures on the test set: The average horizontal distance between the gripper tip and
the block on the table surface amounted to 8.7 mm. The average difference between
the orientation of the gripper and the block orientation amounted to 3.4 degrees (for
a more detailed specification of these performance indicators see Sect. 7).

6 Experiments

In the final experiments, we tested if the overall robotic model shows the hypothe-
sized performance in different task conditions. These conditions vary with respect
to the experimental sequence within a single trial. In general, an experimental trials
starts by generating a block position and orientation at random. The robot arm is
used to place the red block on the table surface at exactly this position and in this
orientation. Afterwards, the robot arm returns to its resting posture.

Task condition WW represents grasping of properly fixated targets.3 In this task
condition, the saccade controller is used for a very precise fixation movement towards
the red block. A maximum of five correction saccades is allowed to reduce the radial
target distance to less than r = 0.015. The left camera image after the last saccade
is used to compute the retinal image and the compass filter values as input for the
arm controller. Moreover, the final camera position is used as input s

(t+1)
KIN for the

arm controller.
In task condition OW, grasping of extrafoveal target objects is carried out.4 After

the red block has been placed on the table surface, the cameras are moved to a
random position where (1) the block is visible in both camera images as input
to the saccade controller, and (2) the full shape of the block is visible in the left
retinal image as input to the visual FM. Afterwards, the saccade controller is used
to generate one saccade towards the red block, but this saccade is never carried out,
only s

(t+1)
KIN is computed. The visual FM predicts the hypothetical retinal image after

the saccade, and from this image the compass filter values are determined as input
for the arm controller.

Task condition WW1 serves as comparison: It is equal to WW, but only one saccade
is carried out, accepting a less than optimal target fixation.5 This allows a more fair
comparison with OW, where only a single hypothetical saccade is determined, but no
correction saccade. This reduces the quality of the camera position input s

(t+1)
KIN of

the arm controller, and the retinal images after the saccade may differ slightly from
the images which were used during training (where a corrective saccade was carried
out if necessary).

Task condition OO is used as a control experiment to demonstrate that the extrac-
tion from orientation information from the retinal images is not trivial and depends
actually on the position of the block in the retinal image.6 Here, the sequence is
similar to condition OW, but the visual FM is not used. Instead, the retinal image
before the hypothetical fixation saccade is used to compute the compass filter values

3WW: With saccade execution, With proper retinal image
4OW: withOut saccade execution, With proper retinal image
5WW1: With saccade execution, With proper retinal image, only 1 saccade
6OO: withOut saccade execution, withOut proper retinal image
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as input for the arm controller.
In all conditions, the grasping movement which is finally generated as output

from the arm controller was carried out at the end of every sequence, and the
grasping success was evaluated. Overall, 100 trials were performed in every task
condition.

7 Results

To evaluate the grasping success, the most important indicator is the percentage
of successful grasping trials; a trial was rated as success if the gripper of the robot
arm was able to grasp the red block firmly and to lift it. This measure tolerates
small position and orientation errors since the distance between the gripper jaws
amounted to 60 mm when it approached the red block. The red block itself has a
horizontal cross section of 74× 23 mm. Moreover, the following indicators are used
to evaluate the grasping precision:

• Block position error: The Euclidean distance between the center of mass of the
red block and the center of the open gripper, projected onto the table surface.

• Vertical position error: The difference between the ideal height of the gripper
tip above the table surface (held constant for all learning examples) and the
actual height.

• Block orientation error: The difference between the block’s orientation on the
table surface and the orientation of the perpendicular to the line that connects
both gripper jaws, projected onto the table surface.

• Vertical orientation error: In all learning trials, the approach direction of the
gripper is exactly perpendicular to the table surface. The vertical orientation
error is the difference between this ideal approach orientation and the actual
approach orientation.

7.1 Grasping success

First of all, the percentage of successful grasping trials clearly shows that our model
of extrafoveal grasping actually works as expected (see Table 1): In condition OW,
the success rate amounts to 85%. As expected, the success rate in grasping towards
precisely fixated target objects (condition WW) is higher, amounting to 97%. Condi-
tion WW1 (target objects only fixated with one saccade) has a success rate of 89%,
which shows that the performance difference between conditions WW and OW is largely
attributable to the less precise camera position information if only one saccade is
scheduled. The baseline condition OO has only a success rate of 40%, clearly indicat-
ing that the prediction of the retinal image is not just a trivial add-on, but instead
crucial for successful grasping towards extrafoveal targets. The pairwise differences
are statistically significant on the p < 0.01 level, expect of the differences WW vs. WW1
(only p < 0.05) and WW1 vs OW (not significant) (four cell Chi-square test).
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WW WW1 OW OO

97 % 89 % 85 % 40 %

Table 1: Success rate (over 100 grasping trials in each experimental condition).

Error WW WW1 OW OO

Block position [mm] 8.9 (7.2) 12.9 (12.2) 15.4 (9.7) 23.6 (27.1)

Vertical position [mm] 2.1 (2.9) 2.4 (4.8) 4.0 (6.4) 6.1 (12.1)

Block orientation [deg] 4.2 (9.4) 6.4 (13.2) 12.5 (13.1) 37.9 (23.0)

Vertical orientation [deg] 0.5 (0.4) 0.7 (1.2) 1.1 (1.5) 2.0 (5.1)

Table 2: Average position and orientation errors for the different task conditions.
Standard deviations are given in brackets.

7.2 Grasping precision

The indicators for grasping precision show results which are consistent with the
grasping success rate. Table 2 presents the average position and orientation errors
for the grasping posture of the robot arm. Regarding the mean value of all trials,
condition WW shows always the best precision, closely followed by WW1, and with a
certain distance by OW. OO is always the worst performer, especially with regard to
the block orientation error. The last result illustrates very clearly the impact of the
missing visual FM.

The vertical position and orientation errors are much smaller than the block
position and orientation errors in all conditions. This is no surprise since the distance
between gripper tip and table surface and the default approach direction of the
gripper are constant for all learning examples and thus rather easy to learn by the
adaptive arm controller network.

We restricted the statistical tests to a pairwise comparison of the mean values.
For each error measure, we computed pairwise t-tests (two-sided) for independent
samples between the four task conditions. We corrected the degrees of freedom to
compensate for the unequal estimated population variances (Bortz, 1993). All 24
tests yielded significant results at least on the p < 0.05 level with the following
exceptions: Block position error: WW1 vs. OW; vertical position error: WW vs. WW1,
WW1 vs. OW, OW vs. OO; block orientation error: WW vs. WW1; vertical orientation error:
WW vs. WW1, WW1 vs. OW, WW1 vs. OO, OW vs. OO.

7.3 Saccadic precision

In condition WW, the average radial target distance after the final saccade amounts
to r = 0.012, while in condition WW1 with only one saccade it amounts to r = 0.018.
This shows that the lower saccadic precision in condition WW1 is actually the most
plausible source of the larger mean block position error and smaller success rate
found in WW1 compared to WW. Furthermore, in condition WW1 the correlation between
saccade length (for the left camera) and radial target distance amounts to rCorr =
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Figure 12: This figure shows the retinal images which are used to extract the block
orientation for the WW task condition. A cross marks the center of each retinal image.
In addition, the block segment and the corresponding compass filter histogram are
shown for each retinal image. The first row with white background depicts successful
trials, the second row with gray background failed trials. There are only three failed
trials in the WW condition.

0.16. Inspired by this finding, we investigated if there is a direct relationship between
saccade length and grasping precision. For conditions WW1, OW, and OO, we computed
the correlations between saccade length and the different position and orientation
errors. The largest absolute correlation coefficient is found between saccade length
and block orientation error in the OO condition (rCorr = 0.11). However, even this
correlation value is not significantly different from zero (t = 1.1; df = 98), thus we
cannot draw any firm conclusions from these correlation coefficients.

7.4 Visualization

Figures 12 to 15 show some exemplary retinal images which are used for the compu-
tation of the compass filter values for the different task conditions. In the first row
of each figure (white background), the images from four successful trials are shown,
in the second row (grey background) from three or four failed trials. In addition
to the retinal image, the segment which is identified as red block is shown together
with the compass filter histogram which is computed from this segment. Moreover,
Fig. 14 for task condition OW shows on top of this information the retinal image
which is used as input for the visual FM. The predicted retinal image is depicted
underneath together with the identified block segment and compass filter histogram.

Figure 12 shows the examples for the WW condition. The block is well centered
in the retinal image, indicating good saccadic accuracy. For the first row with
successful trials, four different block orientations have been chosen. The compass
filter histogram reflects the block orientation by the position of the minimum within
the histogram.

Figure 13 is dedicated to the WW1 condition. The retinal images reveal that even
in the successful trials the red block is not as well centered as in the WW condition,
resulting in slightly banana-shaped segments (top left trial).

Figure 14 displays exemplary trials of the OW condition. The difference between
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Figure 13: Retinal images of the WW1 task condition (for further explanation see
caption of Fig. 12).

the depicted retinal images which are input and output of the visual FM illustrate
its performance. Shape and orientation of the block in the retinal images differs
considerably between input and output. But it becomes also clear that the prediction
is sometimes not accurate enough and generates atypical block shapes like in the
second trial in the first row (nevertheless successful) or in the second trial in the
second row (failed). The predicted block shape in the latter is nearly quadratic
resulting in a compass filter histogram with equal values. Histograms like this do
not occur in the learning examples for the arm controller network, thus this input
is outside the learned data manifold and causes erratic extrapolation and failure.

Finally, Fig. 15 shows exemplary trials for the OO condition. Here, no saccade and
no prediction takes place, and the retinal images which are recorded at the initial
camera position are used to generate the compass filter histograms from the block
segment. The shapes of the block segment differ strongly from the ideal shapes
shown in Fig. 12 in the context of the WW condition. Accordingly, the compass
filter histograms are sometimes ill-shaped (especially showing too large differences
between minima and maxima). Moreover, the correction of the orientation of the
block segment, which is accomplished by the visual FM in condition OW, is missing.
These findings correlate well with the low grasping success rate in the OO condition.

8 Discussion

8.1 Evaluation of the results

The most important goal of our robotics study was to show that our model of
grasping towards extrafoveal targets actually works as expected. All important
components of the model — a saccade controller, a visual FM, and an arm controller
— were implemented for the use with a a robotic real-world setup for this grasping
task. The results show that the suggested architecture is actually capable of fulfilling
this task. This supports the claim that spatial attention shift are accompanied by the
preparation of eye movements (as the premotor theory of attention states; Rizzolatti
et al., 1994), and corroborates our specific hypothesis that a visual FM predicts how
the target object would appear in the fovea, and that this prediction is used to
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Figure 14: Retinal images of the OW task condition (for further explanation see
caption of Fig. 12; in addition, the retinal image which is used as input for the
visual FM is shown for each trial on top of the other images).

extract precise information about orientation (or in a more general sense, about
shape).

Furthermore, we expected that grasping towards precisely fixated target objects
results in a better grasping performance than grasping towards extrafoveal target
objects (as suggested by the literature on eye-arm coordination; Abrams et al., 1990;
Vercher et al., 1994). This expectation was confirmed in a comparison of the re-
spective task conditions with regard to the overall grasping success and with regard
to the grasping precision. In an additional task condition, the influence of saccadic
accuracy on grasping success was explored. The fixation movement was restricted
to one saccade regardless of the resulting accuracy (like in the extrafoveal condi-
tion). This revealed that the superior performance of grasping towards precisely
fixated targets compared to extrafoveal targets can be attributed to a large extent
to the inferior saccadic accuracy. Only part of the performance difference has to be
explained by insufficient visual prediction.

The baseline condition without saccade execution and without visual prediction
was used to show that the retinal mapping causes non-trivial changes of object
shape and orientation depending on the position in the retinal image. As expected,
directly extracting orientation information from the non-predicted retinal images
and feeding it to the arm controller resulted in low grasping success. Furthermore,

22



Figure 15: Retinal images of the OO task condition (for further explanation see
caption of Fig. 12).

especially the block orientation error in this task condition was very high compared
to the other conditions.

8.2 Premotor theory revisited

The premotor theory of attention (Rizzolatti et al., 1994) is supported by many stud-
ies which demonstrate a close coupling between attentional “selection for perception”
and attentional “selection for action”, especially in the context of eye movements
(Baldauf and Deubel, 2008; Deubel and Schneider, 1996; Godijn and Theeuwes,
2003; Rolfs et al., 2005). However, these findings are generally compatible with two
different theoretical accounts. One of them is the premotor theory which states that
attention shifts are accomplished by the preparation of (non-executed) motor com-
mands (thus, motor commands first), the other approach states that both selection
mechanisms are driven in parallel by the attentional allocation (thus, motor com-
mands last). For example, the “visual attention model” by Schneider (1995) follows
the second route. At the moment, it is not possible to draw clear conclusions in
favor of one of these theories based on experimental findings. In a neurophysio-
logical study by Juan et al. (2004) on macaque monkeys, the experimenters were
able to dissociate spatial attention from saccade preparation which contradicts the
premotor theory. On the other hand, Craighero et al. (2004) showed in a behavioral
study with human subjects that it is not possible to shift the attention to peripheral
targets on the retina which are outside the reach of saccadic eye movements. This
finding strongly supports the premotor theory. Furthermore, Eimer and colleagues
(Eimer et al., 2005, 2006) interprete their experimental results on shifts of spatial
attention and manual response preparation in favor of the premotor theory.

Our model of extrafoveal grasping relies on the preparation of a saccadic motor
command whenever the attention is shifted towards a peripheral target object. This
motor command is required as input for the visual FM and the arm controller. In
the visual attention model, the generation of the saccadic motor command is not
mandatory, while it is in the premotor theory. For this reason, our approach to
extrafoveal grasping fits better with the premotor theory.
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8.3 Model compared to neurophysiological findings

Overall, our combined model operates at a rather abstract level. The input and
output of the different components are intended to model the information flow on a
level of abstraction which is feasible to be implemented in a robot setup. Neverthe-
less, in the following we would like to point out some correspondences between our
model and neurophysiological findings.

An important input to the arm controller is the camera position which corre-
sponds to the gaze direction of the eyes in biological systems. In the literature
on eye-arm coordination, this information is often referred to as “extraretinal eye
position information” (EEPI) (e.g., in Bockisch and Miller, 1999). EEPI plays in
important role in the localization of targets which appear as visual stimuli on the
retina (e.g., Battaglia-Mayer et al., 2003; Bock, 1986). EEPI allows the transforma-
tion from eye-centered to head-centered coordinates; head position information is
needed to further localize the target in body-centered coordinates. As simplification,
the latter is omitted in the model, assuming a fixed head position. Both kinesthetic
eye position information and the efference copy of the eye positioning commands
are plausible sources for EEPI (Bridgeman, 1995; Weir, 2006). Here it is supposed
that both sources are compatible with each other and can be added up to compute
the hypothetical eye position information after a non-executed saccade. Otherwise,
an additional internal model would be necessary for this transformation. Despite
this simplification, it is important for the plausibility of our model that the “hypo-
thetical EEPI” is actually available to the nervous system. Actually, experimental
studies show that EEPI starts to change before saccade onset (Bockisch and Miller,
1999; Dassonville et al., 1992; Matin et al., 1970); thus, the nervous system has the
means to update EEPI before the eye movement takes place and therefore before
the kinesthetic eye position information can change.

Many studies on eye-arm coordination emphasize the necessary coordinate trans-
forms for the localization of target objects in body- or arm-centered space after they
have been perceived as visual input on the retina. For example, Snyder (2000)
presents the finding that in some cortical regions the locally represented retinal po-
sition is modulated by the population code of the gaze direction (this modulation
has been termed “gain fields”). Coordinate transforms like this allow to compute
the position of a target object in head- or body-centered coordinates, but they do
not explain how the overall object shape is transformed. Here, the visual FM of our
model offers a plausible mechanism.

The output of the arm controller in our model are final arm postures, not tra-
jectories. This is consistent with the result of Graziano et al. (2002) in a study on
monkeys, in which the stimulation of certain motor cortex neurons lead to hand
locations independent of the initial arm posture. Thus, this level of encoding is
biologically plausible.

8.4 Remarks on the components of the model

The components of the overall model — the saccade controller, the visual FM, and
the arm controller — are not pre-wired. Instead, they are acquired by different
learning strategies. These strategies have been presented and discussed in previous
publications (Hoffmann et al., 2005; Schenck and Möller, 2006, 2007). For this
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reason, we restrict the discussion here to a few remarks.
For the saccade controller, we use learning by averaging although many authors

favor feedback error learning for saccade control in humans and primates (Dean
et al., 1994; Gancarz and Grossberg, 1999). Nevertheless, learning by averaging
offers a new way of adaptive motor control which is genuinely simple and low-
level in its algorithmic structure and therefore a viable candidate for biological or
psychological modeling. Future research has to show for which motor tasks it is
suited as plausible mechanism.

The visual FM is learned by matching regions in the retinal images before and
after the saccade. Over many learning trials, correspondences emerge during the
matching process. From these correspondences, a mapping between pixel positions
in the retinal images before and after the saccade is constructed, and non-predictable
image regions are detected by the lack of any clear correspondence. This learning
process is restricted to low-level visual processing and therefore a plausible candidate
for biological modeling. Studies on “predictive remapping” support the claim that
visual prediction takes place in the brain. In these studies, neurons which shift
their visual receptive fields in anticipation of an upcoming saccade were discovered
in various brain areas (Duhamel et al., 1992; Umeno and Goldberg, 1997; Walker
et al., 1995).

8.5 Alternative solutions

The retinal mapping in our model is used to change the pattern of sensor activation
depending on the position of a visual stimulus in a retinal image (in analogy to
biological systems as pointed out in the introduction). These activation differences
are still relevant on the next processing level where compass filters are used to
detect edge orientations (like the simple cells in the visual cortex; Hubel and Wiesel,
1962). In consequence, the arm controller which has been adapted to orientation
information gained from the foveal region of the retina cannot work successfully
with extrafoveal target objects. As solution, we offered visual prediction of the
foveal region by a FM. This has the advantage that the system can solve the task by
a single arm controller which is also used for grasping of precisely fixated targets.

Within our framework, there exist two additional approaches which offer alterna-
tive solutions. Both cause considerably more overhead on part of the arm controller.
First, instead of visual prediction, one could use a multitude of arm controllers, each
adapted to a certain region of the retina. This could work in theory, but would re-
quire a lot of storage effort for the parameters of the large number of arm controllers.
Moreover, each arm controller would need its own learning examples in which the
target object is exactly depicted on the retinal region for which the controller is re-
sponsible. This means a lot of additional effort in the collection of learning examples
and in the adaptation process. As second alternative solution, one could use one arm
controller which also takes the retinal position of the target as input. This seems to
be a straightforward solution, but it suffers from the disadvantage that the manifold
of training data becomes considerably more complex. The relation between compass
filter values and joint angles would be mediated by retinal position in a non-linear
fashion, which basically adds two non-redundant dimensions to the data manifold.
Thus, the interpolation task of any neural network algorithm (whether biological
or artificial) would become more difficult and would require more complex network
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structures. Moreover, the required amount of training data for such a network would
be much larger: Enough learning examples for all retinal regions would be needed
to allow for adequate interpolation.

8.6 What does our robotic model offer psychology?

The use of robots within psychological research serves multiple purposes. On the
one hand, there is the field of human-machine interaction in which robots serve as
the interaction partner of human subjects (e.g., Tanaka et al., 2007). On the other
hand, robots are applied to replace formal models by material models (Rosenblueth
and Wiener, 1945) or machine instantiations (Tamburrini and Datteri, 2005). For
the latter reason, robots are used in the present study.

Many psychological models attempt to explain the mechanisms underlying spe-
cific classes of behavior. Instead of just focusing on the sensory input and the
corresponding overt behavior as in behaviorism (e.g., Watson, 1994), these models
provide an insight into the “black box” which transforms system inputs into system
outputs. In the following, we will call these models “functional models” because
they offer an account to the inner functioning of the psychological system. A good
functional model allows the generation of new hypotheses of how specific changes in
the input would result in specific changes in the output.

Functional models can differ with regard to how precisely they are specified. In
the one extreme, a formal model is just described by its main structural components
and a sketch of the information flow between them as in Fig. 1. In the other extreme,
the model is defined such precisely that it can be implemented on a robot setup,
including surplus details which are only implementation-specific and not relevant
for the model per se. The step from the formal model to the material model or
machine instantiation is expensive with regard to development time and equipment
costs, thus it has to be justified by the expected scientific gain.

In the view of Rosenblueth and Wiener (1945), there are two main reasons for a
material model: It “may enable the carrying out of experiments under more favorable
conditions than would be available in the original system” (p. 317), and it has to sug-
gest experiments “whose results could not have been easily anticipated on the basis
of the formal model alone” (p. 318). In a more recent review on biorobotics research,
Webb (2000) summarizes the studies in this field under the four headlines “testing
hypotheses”, “characterizing the problem and understanding the environment”, “in-
tegrating data and enforcing completeness”, and “producing new hypotheses”. This
agrees well with the arguments of Rosenblueth and Wiener (1945), but emphasizes
as additional benefit of robotic models that they enforce a deep understanding of
the complete sensorimotor loop. In contrast, in a formal “box model” like in Fig. 1
logical flaws may stay unnoticed, and the relationship between the abstract inputs
and outputs of the model and the real-world environment remains unclear (see also
Datteri and Tamburrini, 2007; Webb, 2001).

However, one cannot expect that robot experiments will replace behavioral and
neurophysiological studies. Final evidence in favor of a formal model has still to be
obtained from the real psychological (or biological) system. Robotic models are an
additional research tool which supplements conventional theoretical and experimen-
tal work. Robot implementations can be used to reject a formal model, both during
the development of the robot instantiation (because logical flaws of the formal model
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become obvious) and during the final robot experiments (because it is not possible to
generate the predicted effects). Whenever it is difficult to design a good behavioral
or neurophysiological study with human subjects, the use of robots can be a valu-
able approach to further shape the formal model, to generate additional hypotheses,
and — in case — to falsify the formal model in an early stage of development. In
the following, we will examine which of these benefits apply to our robotic model of
extrafoveal grasping and its components, in this way demonstrating how the use of
robots can be advantageous for psychology on a theoretical and experimental level.

First of all, in our attempt to implement the complete sensorimotor loop for
extrafoveal grasping, we became aware that the premotor theory of attention (Riz-
zolatti et al., 1994) might not be sufficient to constitute all the necessary information
processing steps. Usually, it is assumed that attention coincides with enhanced sen-
sory processing in the attended region (Kanwisher and Wojciulik, 2000), but the
“enhanced processing” itself remains rather unspecified. We filled this gap with the
visual prediction hypothesis to enable extrafoveal grasping on our robot setup. In
this respect, the creation of the robotic model helped to enhance the underlying
formal model. Furthermore, without the robot implementation it was not possible
to determine definitely if visual prediction is really necessary in this task domain.
For this reason, our final experiment incorporated the important comparison to the
baseline condition without fixation and without prediction. Through this compari-
son, clear evidence was obtained that the orientation errors which are related to the
distortions in the retinal images have the expected negative impact — or more gen-
erally spoken that the uneven sensor distribution on the retina does not allow for a
mechanism which extracts target information without reference to the specific target
location on the retina. In this way, the use of a robot setup was the right method
to “characterize the problem and understand the environment” (Webb, 2000). In
this context, it is important to note that we used retinal images instead of straight
camera images. Although the artifical retinal images are still an abstraction from
the real retinal sensor activation, their usage is not a mere irrelevant implementa-
tion detail. Instead, the retinal images are very important for a close structural
similarity between the biological and the robotic system in an area which is highly
relevant for the validity of the overall robot experiment (“structural accuracy” in
the terms of Webb, 2001). In contrast, the learning algorithm for the arm controller
is for example merely a technical detail.

Furthermore, our robotic approach allowed for experimental variations which
would be difficult to achieve with human subjects. In the robot experiment, it was
easy to switch between the task conditions with and without visual prediction, while
this would be rather difficult in a behavioral or neurophysiological study. However,
one has to admit that the results of the robot study are only a “proof of principle”.
Further work with human subjects is needed to collect supporting evidence from the
real psychological system. The goal of such a behavioral experiment would be to
decide if visual prediction is actually required for extrafoveal grasping. It might be
possible to design such an experiment by enforcing “new” sensorimotor relationships
(e.g., with prism goggles), and by suppressing prediction learning somehow in one
task condition without touching the ability to learn motor controllers for grasping
(although this dissociation seems very difficult to achieve). In this way, our robot
implementation serves as an in advance check of the visual prediction hypothesis and
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as starting point for the design of corresponding experimental studies with humans
subjects.

Similar arguments hold for the learning of visual prediction per se. Here we
suggested an algorithm based on accumulating low-level visual feature matches.
With the current research methods in neurophysiology and psychology, one cannot
expect to collect hard evidence for such a mechanism through experiments with
human subjects or other primates. Nevertheless, the use of a robot implementation
enabled us to test the feasibility of this learning mechanism in the real world. The
methodological value of the robot experiment lies in its ability to falsify the formal
model of the learning mechanism in this early stage of development. As result, the
proposed learning algorithm was not falsified.

In summary, our overall robotic model and its single components allow for ex-
periments which are difficult if not impossible to carry out with human subjects
at the moment, they generate results which are not possible to obtain just by the
underlying formal model (and which help in characterizing the problem and in un-
derstanding the environment), and the successful robot implementation corroborates
our theoretical approaches. In this way, our study demonstrates in multiple ways
that the use of robots is a valuable research methodology within psychology.

8.7 Final conclusion

Our overall model offers a novel functional framework for grasping of extrafoveal
targets based on the premotor theory of attention which has gained a lot of experi-
mental support in the past (e.g., Craighero et al., 2004; Eimer et al., 2005, 2006). It
identifies visual prediction as an important putative component of eye-hand coordi-
nation in this task domain. Moreover, its applicability to a robotic real-world setup
was successfully demonstrated, including novel ways to learn saccade controllers and
visual FMs for eye movements.
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Schenck, W. and Möller, R. (2007). Training and application of a visual forward
model for a robot camera head. In Butz, M. V., Sigaud, O., Pezzulo, G., and
Baldassarre, G., editors, Anticipatory Behavior in Adaptive Learning Systems:
From Brains to Individual and Social Behavior, number 4520 in Lecture Notes in
Artificial Intelligence, pages 153–169. Springer, Berlin, Heidelberg, New York.

Schiegg, A., Deubel, H., and Schneider, W. X. (2003). Attentional selection during
preparation of prehension movements. Visual Cognition, 10(4):409–431.

Schneider, W. X. (1995). VAM: A neuro-cognitive model for visual attention con-
trol of segmentation, object recognition and space-based motor actions. Visual
Cognition, 2:331–376.

Snyder, L. H. (2000). Coordinate transformations for eye and arm movements in
the brain. Current Opinion in Neurobiology, 10(6):747–754.

Tamburrini, G. and Datteri, E. (2005). Machine experiments and theoretical mod-
elling: From cybernetic methodology to neuro-robotics. Minds and Machines,
15(3-4):335–358.

Tanaka, F., Cicourel, A., and Movellan, J. R. (2007). Socialization between toddlers
and robots at an early childhood education center. Proceedings of the National
Academy of Sciences of the United States of America, 104(46):17954–17958.

Tani, J. (1996). Model-based learning for mobile robot navigation from the dynam-
ical systems perspective. IEEE Transactions on Systems, Man, and Cybernetics
— Part B, 26(3):421–436.

33



Umeno, M. M. and Goldberg, M. E. (1997). Spatial processing in the monkey frontal
eye field. 1. Predictive visual responses. Journal of Neurophysiology, 78(3):1373–
1383.

Vercher, J. L., Magenes, G., Prablanc, C., and Gauthier, G. M. (1994). Eye-head-
hand coordination in pointing at visual targets - spatial and temporal analysis.
Experimental Brain Research, 99(3):507–523.

Walker, M. F., Fitzgibbon, E. J., and Goldberg, M. E. (1995). Neurons in the
monkey superior colliculus predict the visual result of impending saccadic eye-
movements. Journal of Neurophysiology, 73(5):1988–2003.

Watson, J. B. (1994). Psychology as the behaviorist views it (reprinted from psy-
chological review, vol 20, pg 158, 1913). Psychological Review, 101(2):248–253.

Webb, B. (2000). What does robotics offer animal behaviour. Animal behaviour,
60(5):545–558.

Webb, B. (2001). Can robots make good models of biological behaviour? Behavioral
and Brain Sciences, 24:1033–1050.

Weir, C. R. (2006). Proprioception in extraocular muscles. Journal of Neuro-
Ophthalmology, 26(2):123–127.

Ziemke, T., Jirenhed, D.-A., and Hesslow, G. (2005). Internal simulation of percep-
tion: A minimal neuro-robotic model. Neurocomputing, 68:85–104.

34


