
Heiko Hoffmann

Unsupervised Learning of Visuomotor Associations

Dissertation

Prüfungsort: Universität Bielefeld, Technische Fakultät

Copyright: Logos Verlag Berlin

to my parents, mother-in-law,

Su-Chen, and Richard

Acknowledgments

First, I like to thank my supervisor Ralf Möller. He provided many of the
basic ideas, gave support, and was always ready with help. Ralf took lots
of care that things worked out smoothly. Furthermore, I appreciate the
freedom given by him during this research. Holk Cruse kindly accepted to
review this thesis; and Helge Ritter and Jannik Fritsch readily joined my
thesis committee.

In the first two years of my PhD work, I shared an office with Wolfram
Schenck. This sharing was a very pleasant experience. Wolfram gave valuable
contributions to this thesis: I used his implementation of the multi-layer
perceptron network and his implementation of the inverse kinematics for the
robot arm; to control this arm, he also provided a C++ library; in addition,
he took the photos in figure 6.3 and provided comments on chapters 1 and
8.

To set up the robots and to get them running, I received help from Bruno
Lara, Janos Kovats, Helmut Radrich, Rainer Giedat, Fiorello Banci, and
Karl-Heinz Honsberg. Henryk Milewski provided a computer model of the
robot arm. Moreover, he and DaeEun Kim fed me with stimulating lunch-
time discussions. During my visits at Bielefeld University, I was kindly as-
sisted by Angelika Deister, particularly in organizing my PhD defense.

I thank my parents for all their help, which in the first place gave me
the opportunity to pursue a PhD, my mother-in-law, who traveled the long
way from Taiwan to Germany to help us, my wife Su-Chen for her endless
support and love, and my son Richard for his patience (for waiting with his
birth until the day after my PhD defense). To them, I dedicate this book.

This work was supported by the Max Planck Institute for Human Cogni-
tive and Brain Sciences in Munich.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline and contributions . 2
1.3 Why using robot models? . 4
1.4 The sensorimotor approach . 5

1.4.1 Limitations of symbolic representations 5
1.4.2 Experimental evidence 6
1.4.3 Perception based on sensorimotor models 9

1.5 Learning of sensorimotor models 11
1.5.1 Neural networks . 12
1.5.2 Internal models . 13
1.5.3 Feed-forward networks as internal models 14
1.5.4 Recurrent neural networks as internal models 15
1.5.5 Self-organizing maps 17
1.5.6 Parametrized self-organizing maps 20

2 Modeling of data distributions 23
2.1 Principal component analysis (PCA) 23

2.1.1 Neural networks for PCA 25
2.1.2 Probabilistic PCA . 25

2.2 Vector quantization . 26
2.2.1 K-means . 28
2.2.2 Soft-clustering . 28
2.2.3 Deterministic annealing 29
2.2.4 Neural Gas . 29

2.3 Mixture of local PCA . 30
2.3.1 Gaussian mixture models 30
2.3.2 Mixture of probabilistic PCA 32

2.4 Kernel PCA . 32
2.4.1 Feature extraction . 34
2.4.2 Centering in feature space 34
2.4.3 Common kernel functions 35

3 Mixture of local PCA 37
3.1 Motivation for local PCA . 37
3.2 Extension of Neural Gas to local PCA 38

3.2.1 Algorithm . 38
3.2.2 Alternative distance measure 40
3.2.3 Simulations . 41

3.3 Extension of the mixture of probabilistic PCA 43
3.3.1 Algorithm . 43
3.3.2 Simulations . 45

3.4 Digit classification . 49
3.4.1 Methods . 49
3.4.2 Results . 50

3.5 Discussion . 53

4 Abstract recurrent neural networks 57
4.1 Motivation . 57

4.1.1 Why abstract recurrent neural networks? 57
4.1.2 Potential fields and local minima 58

4.2 Recall algorithm . 59
4.3 Function approximation on synthetic data 61
4.4 Image Completion . 62

4.4.1 Windows from natural scenes 62
4.4.2 Faces . 66

4.5 Kinematic arm model . 68
4.5.1 Methods . 68
4.5.2 Results . 70

4.6 Dependence on the number of input dimensions 74
4.7 Discussion . 80

5 Kernel PCA for pattern association 85
5.1 Motivation . 85
5.2 Pattern association algorithm 87

5.2.1 Spherical potential . 87
5.2.2 Cylindrical potential 87
5.2.3 Recall . 89

5.3 Experiments . 90
5.3.1 Methods . 90
5.3.2 Results . 91

5.4 Discussion . 95

6 Visuomotor model for a robot arm 101
6.1 Visual guided grasping . 101

6.1.1 Related work . 101
6.1.2 High-dimensional image data 102

6.2 Methods . 103
6.2.1 Robot setup . 103
6.2.2 Data collection . 104
6.2.3 Image processing . 105
6.2.4 Tuning curves . 107
6.2.5 Training . 108
6.2.6 Recall . 109

6.3 Results . 110
6.4 Discussion . 112

7 Forward model for a mobile robot 117
7.1 Introduction . 117

7.1.1 Motivation . 117
7.1.2 Tasks . 118

7.2 Methods . 119
7.2.1 Robot setup . 119
7.2.2 Data collection . 119
7.2.3 Image processing . 122
7.2.4 Forward model: Multi-layer perceptron 123
7.2.5 Forward model: Abstract recurrent neural network . . 125
7.2.6 Performance outside the training domain 126
7.2.7 Anticipation performance 126
7.2.8 Goal-directed movements 127
7.2.9 Mental transformation 129

7.3 Results . 130
7.3.1 Anticipation with the multi-layer perceptron 130
7.3.2 Anticipation with the abstract recurrent neural network 130
7.3.3 Performance outside the training domain 133
7.3.4 Goal-directed movements 134
7.3.5 Mental transformation 135

7.4 Data outside the training domain 137
7.5 Discussion . 140

8 Conclusions 145
8.1 Data collection and preprocessing 145
8.2 Approximation of the data distribution 146
8.3 Pattern association . 148
8.4 Results compared to other methods 149

8.5 Perception . 150
8.6 Future direction . 151

A Statistical tools 153
A.1 Bayes’ theorem . 153
A.2 Maximum likelihood . 153
A.3 Iterative mean . 155

B Algorithms 157
B.1 Power method with deflation 157
B.2 Kernel PCA speed-up . 157
B.3 Quality measure for a potential field 159

C Proofs 161
C.1 Probabilistic PCA and error measures 161
C.2 The eigenvalue equation in kernel PCA 162
C.3 Estimate of error accumulation 163
C.4 Contraction of input vectors 164

D Database of hand-written digits 167

E Notation and Symbols 169

Bibliography 171

Chapter 1

Introduction

1.1 Motivation

Perception, according to the ninth definition from the Oxford English Dic-
tionary (Simpson and Weiner, 1989), refers to the “the neurophysiological
processes, including memory, by which an organism becomes aware of and
interprets external stimuli or sensations.” For Tolman (1932), perception is
any expectation of an external object or situation “when this expectation
results primarily from present stimuli” (p. 452).

It is still unclear how neural processes lead to an interpretation of external
stimuli, and how ‘seeing’ comes about. At least, we know that most of seeing
needs to be learned1 (see Gregory (1998) for a review). For example, humans
that grow up blind and gain vision as an adult have difficulties to make sense
of their visual experience.

To learn to interpret visual experience, active movement is important.
Kittens that are only passively moved, while observing their environment,
show impaired visual-guided movements (Held and Hein, 1963). In humans,
the influence of action2 on perceptual learning can be seen in visual adapta-
tion studies, visual recognition studies, and fMRI experiments (section 1.4.2).
This link between action and perception is also plausible from an evolution-
ary perspective. Our survival depends on our interaction with the world, and
therefore, the potential to see something that is irrelevant to our behavior
will disappear through natural selection.

In this thesis, visual perception is explored from the perspective of senso-
rimotor models, for example, models providing a mapping from sensory data
to motor commands, or inversely from motor commands to sensory data.
For example, according to this concept, the shape of an object is understood

1Among these qualities are the perception of three-dimensional space and distance;
on the other hand, motion detection seems to be genetically preprogrammed (Gregory,
2003).

2In this thesis, ‘action’ refers to active movement.

1

2 CHAPTER 1. INTRODUCTION

(‘perceived’) by associating appropriate grasping postures. Such a sensorimo-
tor approach is an alternative to a pure sensory image analysis that extracts
labels such as ‘triangular’ or ‘elongated’. In this thesis, robots are used to
test this sensorimotor approach to perception.

To acquire sensorimotor models, infants spend years to learn the effects of
their actions. They can do this without a teacher, by initially moving their
limbs (seemingly) randomly. Also the robots used in this work collect training
data by exploring the sensory effects of their randommotor commands. Then,
machine learning techniques make sense out of the sensorimotor data by
finding simplified representations. Thus, relations within the data are learned
in an ‘unsupervised’ way. This thesis tackles problems that arise in the
learning of sensorimotor models, for example, ambiguities and generalization.

1.2 Outline and contributions

This thesis introduces unsupervised learning algorithms for arbitrary senso-
rimotor associations. The experimental and mathematical understanding of
these algorithms will be given considerable space. Two robot setups—a robot
arm and a mobile robot—serve as a test bed for our sensorimotor theory of
perception of space and shape, specifically for the learning and application
of visuomotor models.

The remainder of the Introduction focuses on two points: the back-
ground of the sensorimotor approach to perception and the description of
existing learning techniques. The first point covers experiments that show an
influence of action on perception and reviews hypothesis on perception based
on sensorimotor models. The second point covers artificial neural networks
and their application to sensorimotor models. These networks comprise feed-
forward networks, recurrent networks, and Kohonen’s self-organizing maps
(Kohonen, 1995).

Chapter 2 reviews existing methods related to the new unsupervised
learning techniques. The collection of the sensorimotor data is a distribution
of data points in some high-dimensional space. The goal of learning is to find
an approximation of this distribution. Two strategies are used: first, fitting a
mixture of ellipsoids to the data, and second, mapping the data to a higher-
dimensional space in which they can be approximated by a single hyper-plane.
The first uses a combination of vector quantization and principal component
analysis (PCA). Here, PCA is restricted to a region within the distribution;
hence, it is called local PCA. A mixture of local PCA relates to a probability
density model of the data (Bishop, 1995). The second strategy is based on
a non-linear extension of PCA that is called kernel PCA (Schölkopf et al.,
1998b).

1.2. OUTLINE AND CONTRIBUTIONS 3

Chapter 3 describes new algorithms to determine the parameters of a
mixture of local PCA from a data distribution. One algorithm combines
the vector quantizer Neural Gas (Martinetz et al., 1993) with local PCA.
Another algorithm extends the mixture of probabilistic PCA (Tipping and
Bishop, 1999), such that it can cope with sparse distributions, like typical
sensorimotor data. Both algorithms are tested on synthetic data and on the
classification of hand-written digits.

Chapter 4 describes a novel pattern-association method that builds on
the mixture of local PCA from chapter 3. Input and output are parts of a
data point in the sensorimotor space. In this space, the input portion of a
data point is the offset from zero of a constrained subspace. The intersection
of this subspace with the mixture of ellipsoids gives a completed data point,
which yields the output portion in its components. The method resembles a
recurrent neural network, since input and output components can be chosen
after learning, and arbitrary distributions can be approximated instead of
just functions. The new method learns to complete images and learns the
kinematics of a simulated robot arm with redundant degrees of freedom.
The latter task demonstrates the advantage over feed-forward networks. In
addition, the dependence on the number of input dimensions will be analyzed
experimentally and theoretically.

Chapter 5 introduces an alternative pattern-association method, which
is based on kernel PCA. A subspace spanned by the principal components
of the distribution’s mapping into an infinite-dimensional space serves as
a representation of the data. Here, recall is a descent in a potential field,
and its region of attraction is the principal subspace. With the help of a
kernel function, all computation can be done in the original space. The new
pattern-association method is tested on synthetic data and on the kinematic
arm model from chapter 4.

In chapter 6, the pattern-association methods from chapter 4 and 5 are
applied to a visuomotor model for a robot arm. The robot is equipped with a
two-finger gripper and a camera. The task of the robot is to grasp an object
by associating an image of the object with an arm posture. Image processing
is necessary and mimics biological functions. Furthermore, it proved to be
of advantage to use a population coding for the joint angles, the object’s
position, and its orientation within the image. The experiment shows that the
robot can perceive an object’s position and orientation in space by simulating
an arm posture suitable to grasp the object.

Chapter 7 presents a forward model for a mobile robot with an omni-
directional camera. The model predicts the sensory consequence of a motor
command. By anticipating the effect of a sequence of motor commands,
the robot can either select actions that lead to defined goal states or use
the simulation of actions to estimate its location in space and its distance

4 CHAPTER 1. INTRODUCTION

to obstacles. In learning the sensorimotor model, a multi-layer perceptron
proved to be better than the newly developed pattern-association described
in chapter 4. The reason for this difference is explored.

Chapter 8 sums up the results and puts them into relation with each
other. Appendix A describes some common statistical tools. Some of the
algorithms used are presented in Appendix B. Mathematical proofs can
be found in Appendix C. Appendix D shows samples from a database of
hand-written digits, andAppendix E contains lists with notations, symbols,
and abbreviations.

Chapter 3 to 7, further appendix B.3 and appendix C contain the contri-
butions of this work. Parts of this research has been published beforehand.
These parts are:

Section 3.2.1 and 3.4: the extension of Neural Gas to local PCA and its
application to digit classification (Möller and Hoff-
mann, 2004).

Section 4.2 and 4.5: the pattern recall based on a mixture model and its
application to a kinematic arm model (Hoffmann
and Möller, 2003).

Section 6.2.2 and 6.2.3: some of the methods for the robot-arm experiments:
the data collection (slightly different version) and
the image processing that extracts the orientation
of an object (Schenck et al., 2003).

Chapter 7: the anticipation based on a multi-layer perceptron,
the goal-directed movements, and the estimate of
the robot’s location (Hoffmann and Möller, 2004).

Appendix C.3: the theoretical prediction of the error accumulation
for the anticipation task in chapter 7 (Hoffmann
and Möller, 2004).

1.3 Why using robot models?

‘What I cannot create, I do not understand.’

R. P. Feynman3

Understanding the brain requires more than knowing which brain part
processes which function. Understanding must include how specific tasks are

3This sentence was written on his blackboard, see S. W. Hawking (2001), Das Univer-
sum in der Nußschale, p. 91.

1.4. THE SENSORIMOTOR APPROACH 5

solved. Without a hypothesis on the function of a neural structure, anatomi-
cal and electro-physiological data are often difficult to interpret. Thus, mod-
els of the brain function are developed. Although certain details of the model
can be tested by experiment (for example, whether, in a certain cortex re-
gion, an object’s position is coded in eye-centered coordinates (Batista et al.,
1999)), the overall working of the model usually relies on human intuition,
which could be wrong. Therefore, a good test seems to be to construct a sys-
tem able to do the task studied. This construction is ‘synthetic modeling’,
which may be understood as an extension to its analytical counterpart.

In synthetic modeling, robots have an advantage over simulations because
the latter are more likely to oversimplify a problem (Brooks, 1986a). To be
feasible, simulations will usually include only those parts that seem essential
from the perspective of the scientist. Thus, in a robot setup, problems may
emerge that have not been foreseen in a simulation. For example, different
from most simulations, in the real world, the sensory input is noisy, and this
noise may make a model break down.

It remains arguable how good a robot can model biology (see Webb (2001)
and the open peer commentaries following that article). The solution found
by a robotics engineer might be different from the one realized in the brain
(the neural circuits differ from the engineered ones). Nevertheless, being
forced to solve a problem in the real world results at least in an understanding
of the difficulties that need to be overcome. Therefore, testing models on
robots helps to develop an intuitive understanding of brain function.

1.4 The sensorimotor approach

This section starts with a discussion on the limitations of the ‘symbol sys-
tems’ perspective to perception. The symbolic approach, pursued tradition-
ally by artificial intelligence, assumes a one-way processing of visual informa-
tion from raw sensory data to symbolic representations. The sensorimotor
approach, in contrast, assumes that visual perception depends on a motor
representation. This section reviews experimental evidence of an (involun-
tary and subconscious) influence of action on the visual perception, and closes
with a collection of hypothesis on perception based on sensorimotor models.

1.4.1 Limitations of symbolic representations

According to the symbol-systems approach, every item in the world is mapped
onto a symbol. For example, the image of a chair is mapped onto the label
‘chair’. After having labeled all items, every subsequent task is solved by
manipulating the labels. For example, the ‘chair’ is in the ‘middle’ of the

6 CHAPTER 1. INTRODUCTION

room, I am standing at the ‘door’. Therefore, given the known geometry of
the room, I need to ‘go forward’ before I can ‘sit down’.

This strategy has been followed by the so-called ‘Good Old Fashioned
Artificial Intelligence’ or short GOFAI (Haugeland, 1986). GOFAI was suc-
cessful to cope with tasks that are difficult for humans, like playing chess,
but GOFAI did not succeed on tasks that humans do effortlessly, like reach-
ing for a pen on a cluttered desk. This difficulty suggests that the brain
has a different strategy for solving these tasks (Pfeifer and Scheier, 1999).
Moreover, following the symbolic approach, the mappings from real objects
onto symbols were usually done by a human, leaving only the symbol ma-
nipulation to the machine. Therefore, the approach distracts from the real
problem of object manipulation (Brooks, 1986b). As it turned out, this gap
to the real world could never be closed (Pfeifer and Scheier, 1999).

1.4.2 Experimental evidence

While artificial intelligence and robotics only started recently to recognize the
influence of action on the visual perception, experimental psychology studied
this influence for more than a century. An activemovement (or manipulation)
that causes a sensory change will alter the corresponding perception in a
following passive observation condition. Furthermore, experiments show that
neurons exist that fire both during active movement and perception.

Visual adaptation

Several studies show that adaptation to visual distortion depends on activity.
I start with an old but illustrative study, and then present newer evidence.
To find an answer to the question why we see the world upright despite
retinal inversion, Stratton (1896, 1897) did experiments with goggles that
revolve sight by 180◦. In the main experiment (Stratton, 1897), he wore the
goggles over a period of eight days. In the beginning, everything looked up-
side down and the eye-hand coordination was strongly handicapped (manual
operations were easier if done blindly). At the end (the last two days), the
conflict between the operation of the hands and the visual impression van-
ished. Stratton could even have the impression that everything looked the
right way up. For him, a new representation was learned next to the old one.
In general, active operations enhanced the switch to the new representation;
he notes, “In rapid, complicated, yet practiced movements, the harmony of
the localization by sight and that by touch or motor perception—the ac-
tual identity of the positions reported in these various ways—came out with
much greater force than when I sat down and passively observed the scene”
(p. 356). His findings therefore suggest that the interaction with the world

1.4. THE SENSORIMOTOR APPROACH 7

leads to our impression of upright vision. From a study with monkeys that
wore inverting goggles for months, Sugita (1996) reported a reorganization
of the visual cortex. But, the effect of the adaptation on perception is still
debated, and some see Stratton’s description of the inversion of vision as
exaggerated (Linden et al., 1999).

The importance of active movement in visual adaptation has been further
observed in experiments with wedge-prism goggles and with underwater vi-
sion. Wedge-prism goggles displace sight by a couple of degrees to one side.
In the experiment by Held and Freedman (1963), subjects reached to tar-
get points either actively or passively (external force), while wearing these
goggles. After the removal of the goggles, the subjects showed after-effects,
resulting from an adaptation to the changed visual projection, only in trials
following active movements. In the same direction goes a study with divers
(Luria and Kinney, 1970). When wearing diving goggles under water, objects
appear closer to the untrained eye; this also leads to pointing errors. Here,
adaptation was faster if the divers were engaged in activities like placing a
weight on a checkerboard grid.

Given these two studies, it may be still argued that the adaption is on
a low sensorimotor level, and that it does not influence perception. How-
ever, a study with left-hemispatial-neglect patients (which have a neurologi-
cal deficit of attention, perception, and doing actions within their left-sided
space) shows that prism adaptation also involves higher-level space percep-
tion (Rossetti et al., 1998). After doing pointing tasks with prisms, the
patients—after removal of the goggles—could turn their awareness toward
the neglected side (to a degree corresponding to the visual shift resulting
from the prism). This awareness shift was demonstrated with tests on read-
ing and on drawing. A following study could induce neglect in healthy hu-
mans (Colent et al., 2000). The adaptation to left-deviating prisms resulted
in a rightward bias for perceptual and motor line-bisection tasks.

Also a treadmill (a conveyor-belt for indoor exercises) can alter your per-
ception. After being exposed to a static visual input while running, a runner
observes an after-effect when standing still. The surroundings appear (er-
roneously) to be moving toward the runner (Pelah and Barlow, 1996). If
our interpretation of vision would depend solely on the retinal image, such a
finding could not be explained.

Recognition tasks

Active control has further a positive effect on recognition tasks. Simons and
Wang (1998) compared active to passive viewpoint changes. Familiar objects
(like a brush or a mug) were presented on a circular table. Subjects had to
remember the position of all objects. Two set of trials were compared. In

8 CHAPTER 1. INTRODUCTION

the first set, the subjects walked to another viewing position, and in the
second set, they were either passively moved (in a wheelchair) or the table
was rotated (the change of the retinal image was the same in all conditions).
In the active condition, changes were recognized easier. In a different study,
novel 3D objects were presented on a computer screen (Harman et al., 1999).
In the training block, subjects could either explore the objects by rotating
them with a trackball, or they passively observed the rotated objects. Later,
in the test block, actively explored objects could be easier recognized than
passively observed ones (in an ‘old/new’ discrimination task). The advantage
of active exploration over passive observation was further found in virtual
reality studies (James et al., 2002).

Neuroscience

The action-perception link has also a physiological basis. In the macaque
monkey, neurons have been found that fire both during the grasping of ob-
jects and during the observation of graspable objects (Rizzolatti et al., 1988;
Murata et al., 1997; Rizzolatti and Fadiga, 1998). These neurons have been
termed ‘canonical F5 neurons’ (located in the premotor cortex, area F5)4.
They are specific to the type of goal, for example, to precision grips or power
grips, and also to the size of observed objects (which require different grip
types). Furthermore, they do not respond to objects out of reach.

This link between action and perception is not only restricted to the di-
rection from vision to premotor neurons; actions can also influence the acti-
vation of the visual cortex. On humans, using functional magnetic resonance
imaging (a tool to visualize the local energy consumption in the vital brain),
Astafiev et al. (2004) could show that the area in the visual cortex that
responds to observing body parts of other humans is also active during goal-
directed movements of the observer’s own limbs.

Conclusion

Many experiments have shown that one’s own actions influence perception,
especially perceptual learning. Active movements (as opposed to passive
ones) yield an easier adaptation to visual distortion and yield a better per-
formance in recognition tasks. Moreover, neural responses that represent
both action and perception suggest a direct association between the two.

4In recent years, the ‘mirror neurons’ became more popular (Rizzolatti et al., 2001).
These neurons also fire when the monkey sees the grasping movement done by someone
else. They have been therefore linked to imitation. However, this thesis does not deal
with imitation.

1.4. THE SENSORIMOTOR APPROACH 9

Thus, at least some forms of visual perception seem to be based on learning
visuomotor associations5.

1.4.3 Perception based on sensorimotor models

This section reviews different hypotheses on the functional principles of per-
ception. All relate to action, and present an alternative to the classical
perspective of a one-way processing from sensors to motor actuators.

Affordances

According to Gibson (1977), an object directly offers its behavioral mean-
ing to the observer. This is called ‘affordance’. Gibson (1977) defined that
“the affordance of anything is a specific combination of the properties of
its substance and its surfaces taken with reference to an animal” (p. 67).
Thus, affordances are, for example, a rigid surface affording support (‘step-
on-able’), or a chair being ‘sit-on-able’ for humans. What an object affords
depends not only on the characteristics of the object, but also on the per-
spective of the animal. For example, a chair for a bird is not ‘sit-on-able’,
rather it is ‘stand-on-able’. Affordances thus link action to perception.

Gibson’s concept of affordances stimulated work on the role of action in
perception, and also highlighted the importance of ecologically valid infor-
mation (in contrast to the simplified visual input used in many laboratories)
(Gordon, 1989). However, the concept was also criticized for not explain-
ing how experience changes animals, and for ignoring experimental work on
visual processing (Gordon, 1989).

Perception as simulation

Möller (1996, 1999) suggested that the perception of shape (of an object) and
space (surrounding an agent) is based on the simulation of actions and their
sensory consequences. In this work, the one-way sensory processing is criti-
cized to be unable to select behavior-relevant image structures, and further,
to require an internal observer that needs to act upon a sensory represen-
tation to choose the appropriate behavior. As an alternative, perception is
understood as anticipation. First, an agent learns the sensory consequences

5No experiment can show that all forms of perception depend on action. On the con-
trary, Goodale and Milner (1992) argued that visual processing has two different streams,
only one of them relates to action. It is still possible though that these different streams
strongly interact (Franz et al., 2003). How far the two streams actually differ is still
debated.

10 CHAPTER 1. INTRODUCTION

of its motor commands. Then, it simulates covert motor commands to obtain
the behavioral meaning of sensory information.

In a behavioral task, a series of actions is chosen due to an evaluation
of the predicted sensory state. Based on this idea, Gross et al. (1999) let a
mobile robot navigate collision-free through a maze. In a recognition task,
just the outcome of a simulated action sequence is analyzed. For example,
a mobile agent would recognize a situation as a dead-end by mentally simu-
lating movements and by predicting that no movements are possible beyond
the dead-end. Here, perception is not based on matching visual cues of the
dead-end to a prototype stored in the brain. Thus, the approach has the
potential to generalize over dead-ends of different appearance and to solve
the problem of object constancy (that is, an object can be recognized inde-
pendently of the perspective). Further, objects can be classified based on the
outcome of the simulation.

Such an approach requires the brain to be able to simulate actions without
causing movements, to simulate sensation without receiving sensory input,
and to associate action with the resulting changes in sensation. Hesslow
(2002) reviewed evidence for all three requirements6. He even suggested that
internal simulation is a “mechanism for generating the inner world that we
associate with consciousness” (p. 246).

The ideas of Grush (2004) go in the same direction. In addition, he claimed
that the simulation of covert motor commands is not enough because the
outcome of a motor command depends on the current proprioceptive state.
Thus, a covert motor command should act on an ‘emulator’ of the body,
which updates the simulated proprioceptive state. Such an emulator would,
for example, explain the occurrence of a paralyzed phantom limb following
pre-amputation paralysis: before the amputation, the emulator learned that
any motor plan is mapped onto a constant proprioceptive state.

Consistent with all these simulation approaches are psychological experi-
ments that show that action planning and perception (or sensory prediction)
interfere with each other (Prinz, 1997; Wexler and Klam, 2001; Wohlschläger,
2001). Thus, action planning and perception seem to share a ‘common rep-
resentational domain’ (Prinz, 1997). Such a common representation might
lie in the mechanism of sensorimotor simulation.

A sensorimotor account of visual consciousness

According to O’Regan and Noë (2001), all awareness is based on mastering
sensorimotor associations. They suggest that exercising these associations
explains the perception of constancy and the difference between auditory

6The review is based on his concept of anticipation. There, a series of overt stimuli
and overt responses is simulated.

1.5. LEARNING OF SENSORIMOTOR MODELS 11

and visual experience. As an example for the first, they argue that a line
cannot be recognized solely by its sensory representation. The neural pattern
in the visual cortex does not resemble a line anymore because on the retina,
the photo receptors are distributed inhomogeneously, and furthermore, the
mapping onto the visual cortex is non-linear. The line can be recognized,
however, by exploiting its invariance; namely, a line shifted along its extension
does not change its appearance. Thus, we perceive a line by knowing how
the sensory input changes when we move along the line.

Visual and auditory sensory input vary in different and specific ways when
the body moves. Therefore, knowing how the image of an object changes
when we rotate it before our eyes might explain visual experience (O’Regan
and Noë, 2001); “... the visual quality of shape is precisely the set of all
potential distortions that the shape undergoes when it is moved relative to us,
or when we move relative to it” (p. 942). Support for this claim comes from
visuotactile devices made for the blind to ‘see’ (Bach-Y-Rita, 1972). Here, an
image from a camera mounted near the eyes of a blind is transformed into a
tactile pattern on an electrical stimulus matrix, which is mounted on the back
or abdomen. After some training, the blind can recognize objects or step back
from obstacles approaching the eyes (even if the stimulus occurs actually on
his back). O’Regan and Noë (2001) therefore argue against special neurons
or neural properties that cause visual awareness.

Overall, it is an appealing concept. So far, however, it does not provide
a formalism explaining how the process works. Recently, Philipona et al.
(2003, 2004) provided a formalism, but it only addresses the perception of
the dimensionality of space, and qualities like object recognition are not
addressed. Chapter 7 will come back to the idea about perceiving constancy.

1.5 Learning of sensorimotor models

The above sensorimotor approaches presume that an agent (robot) is equipped
with an internal model of the relation between motor commands or move-
ments and the resulting sensory states. In a behavior-based approach, the
agent must learn this relation from experience. Such adaptive behavior can
be achieved with neural networks, which are able to learn from examples and
generalize between them. This section first gives a short overview of artificial
neural networks, and then describes internal models. Finally, the last parts
give an overview of existing learning paradigms for sensorimotor models:
paradigms based on feed-forward networks, paradigms based on recurrent
neural networks, and two extensions of the self-organizing-map algorithm
(Kohonen, 1995).

12 CHAPTER 1. INTRODUCTION

1.5.1 Neural networks

Artificial neural networks are simplified models of neurons and their con-
nections in the brain. This section just provides a classification of different
structures and functions. The basic mathematics and applications can be
found, for example, in Hertz et al. (1991) and Haykin (1998).

The structure of neural networks can be divided into two classes: feed-
forward networks and recurrent neural networks (figure 1.1). The first have
connections in one direction from input to output. Here, the prominent type
is the multi-layer perceptron (MLP). It has an input layer, one hidden layer
or many hidden layers, and an output layer. MLPs approximate functions.
Therefore, they map from one input pattern to just one output pattern (one-
to-one or many-to-one mappings), but they fail on one-to-many mappings.

outputinput

hidden

Figure 1.1: Two basic neural-network structures: feed-forward (left) and recur-
rent (right).

In contrast, recurrent neural networks have feed-back connections. There-
fore, they do not approximate functions, instead their state (the values of all
neurons) changes in time7. The convergence of the state depends on the
connections. Partially recurrent networks that feed the network output back
into the input oscillate. They have been used for time-series prediction. A
prominent example is the Elman network (Elman, 1990). This network has
an MLP structure with an additional context layer, which receives delayed
input from the hidden layer and therefore acts like a memory (see also fig-
ure 1.5). Fully interconnected networks with symmetric weights converge
to a stable state. These networks have been used for pattern completion
(Hopfield, 1982). Patterns can be stored as stable states.

Neural networks learn either in a supervised way with a teacher, or un-
supervised. In supervised learning, a teacher provides a target value (at the
output) for every input value. Examples are error backpropagation for feed-

7In these networks, the time can be continuous or discrete. However, this thesis only
considers discrete-time models.

1.5. LEARNING OF SENSORIMOTOR MODELS 13

forward networks and backpropagation-through-time for recurrent networks
(Hertz et al., 1991). In contrast, unsupervised learning methods do not need
target values. They either store training patterns (Hopfield network), or try
to find structure in the training set. Structure can be found by assuming that
the training patterns lie on a lower-dimensional manifold embedded in the
pattern space. For example, an auto-associative network—an MLP whose
input and output are identical—constrains the output to a manifold whose
local dimensionality equals the number of neurons in the smallest hidden layer
(Hertz et al., 1991; Kambhatla and Leen, 1997). Further, the self-organizing-
map algorithm (Kohonen, 1995) fits a grid to the embedded manifold (see
section 1.5.5). Finally, networks that do a ‘principal component analysis’
(Diamantaras and Kung, 1996) exploit that the variance of the patterns is
restricted to a few principal directions (see section 2.1).

1.5.2 Internal models

A special application for neural networks are internal models, which relate
motor commands to the sensory change that they cause. Two types can
be distinguished (figure 1.2). First, a forward model predicts the effect of an
action; that is, it maps the current sensory state St (at the time t) and motor
command Mt onto the sensory state at the next time step, St+1. Second,
an inverse model computes the motor command Mt required to change the
sensory state toward a desired value St+1.

t+1
t+1S M tInverse ModelForward Model

SS

M St

t t

Figure 1.2: Internal models relate successive sensory states St and St+1 with
corresponding motor commands Mt.

In human physiology, internal models were suggested to be an integral
part of motor control (Kawato et al., 1987; Wolpert et al., 1995). For goal-
directed movements, inverse models are necessary to directly compute motor
commands. On the other hand, forward models can predict an outcome
of an action before the sensory feedback (via the environment) is available.
Moreover, they might be used to cancel the sensory effects of movements
(Blakemore et al., 2000) and to predict the consequences of actions without
overtly executing them (Wolpert et al., 1995). Chapter 7 will use a forward
model for prediction.

14 CHAPTER 1. INTRODUCTION

1.5.3 Feed-forward networks as internal models

This section describes internal models that are built with multi-layer percep-
trons. Forward models can be learned by observing the effect Ŝt+1 of actions
Mt on the environment. This effect Ŝt+1 is the target value in the training
(Jordan and Rumelhart, 1992).

For inverse models, actions and effects exchange their role as input and
output. One approach to learn an inverse model is ‘direct inverse modeling’
(Jordan and Rumelhart, 1992). Here, the environment produces input pat-
terns instead of target values (figure 1.3). The action Mt will result in the

sensory state Ŝt+1. Thus, the inverse model can be trained to map Ŝt+1 onto
Mt. Training data can be produced by randomly sampling the action space
(Kuperstein, 1988).

t+1
t+1Inverse Model Environment

training input

target

t

S

S Mt
S

Figure 1.3: Direct inverse modeling.

t +1

t +1Inverse Model Forward Model S

M

SSt t

t
S

Figure 1.4: Distal supervised learning.

However, this approach will fail if the environment maps different motor
commands onto the same sensory state. The inverse model cannot learn the
corresponding one-to-many mapping because the MLP would average across
the many possible motor commands, and such an average might not be a
desirable solution (Movellan and McClelland, 1993). Therefore, Jordan and
Rumelhart (1992) suggested to link the inverse model with a forward model
(figure 1.4). First, the forward model is trained separately, as described
above. Then, the combined network learns an identity mapping (note, in
figure 1.4, St+1 acts both as an input and as a target). In the learning process,
the weights of the inverse model are adjusted using error backpropagation,

1.5. LEARNING OF SENSORIMOTOR MODELS 15

while the error propagates through the forward model without changing its
weights.

1.5.4 Recurrent neural networks as internal models

This section presents two sets of examples showing how recurrent neural
networks can be applied. The first set exploits the recurrent connection to
predict a series of sensory states, and the second set uses the relaxation to
stable points for an associative task.

Tani (1996) used a partially recurrent neural network with a context layer
(figure 1.5) as a forward model for a mobile robot. The robot’s environ-
ment was separated into paths and intersections by obstacles. Here, the
sensory state was a set of distances to obstacles, and the motor command,
which was binary, represented the path of choice at an intersection. Using
backpropagation-through-time, the recurrent network was trained on series
of sensory states and corresponding motor commands. After training, given a
sequence of motor commands, the network could predict the resulting sensory
state.

t+1

S M

S

context layer

t t

D D

Figure 1.5: Recurrent neural network with context layer. At each time step the
network maps the current sensory state St and motor command Mt onto the suc-
ceeding sensory state St+1. Dashed arrows indicate complete connections between
two layers. The boxes labeled D delay the feedback by one time step.

The trained network was also applied to a planning task. Here, the se-
quence of motor commands is not known, but the final desired sensory state is
known. Tani (1996) solved this problem by defining a cost function based on
the difference between the desired state and the predicted state that results
from a motor sequence. The motor commands were obtained by minimizing
this cost function using gradient descent.

16 CHAPTER 1. INTRODUCTION

In a simulation of a mobile robot, Jirenhed et al. (2001) also used a recur-
rent neural network for prediction. Here, the environment contained corridors
and corners, but no intersections. The robot had two wheels, whose veloci-
ties were the motor commands. Instead of having these motor commands as
a network input, they were predicted. The goal of this study was to show
that the robot can simulate its movement through the environment. Jirenhed
et al. (2001) interpreted this simulation as an emerging ‘inner world’.

Cruse and Steinkühler (1993) showed that the relaxation in a recurrent
neural network can be used to solve the inverse kinematics of a redundant
robot arm (which can adopt many postures for a given end-effector position).
A simulated robot arm was composed of three line segments in the plane. The
geometric relations of the arm-joint positions were put into a redundant set
of linear equations, s = As, with the unknown state s. This set of equations
can be represented by a recurrent neural network, interpreting the matrix
A as a set of weights (figure 1.6). Such a network can complete a partially
given state. Any component of the state vector s can be set equal to the
corresponding component of an input vector x, which is fixed in its values.
The output is computed by iterating the state s,

si(t+ 1) =
∑

j

Aij ([1− gj]sj(t) + gjxj) , (1.1)

with gj = 1 for input components and gj = 0 for output components. The
state relaxes to a stable point, which yields the output values.

input x

sstate

D
D

D
D

Figure 1.6: Recurrent neural network that iterates a state vector s, given an
input x. Neurons are drawn as circles, and synapses (weights) as black dots. The
boxes labeled D delay the feedback by one time step.

1.5. LEARNING OF SENSORIMOTOR MODELS 17

This approach was further extended to non-linear equations (using the
non-linear functions as activation functions) and to an arm in three-
dimensions with six degrees of freedom (Steinkühler and Cruse, 1998). The
application is not limited to a robot arm; a recurrent network can be also
built for landmark navigation if the coordinates of the landmarks and of the
goal are given (Cruse, 2003b). Cruse (2001) argued that recurrent networks
are much more plausible to describe brain function because they allow the
animal to obtain an internal state and memory, and thus let the animal es-
cape from being a purely reactive system. In addition, Cruse (2003a) related
the recall in recurrent networks, as described above, to the emergence of an
internal world.

1.5.5 Self-organizing maps

To learn sensorimotor relations, Ritter et al. (1990) used the self-organizing
map (SOM) algorithm (Kohonen, 1995). This algorithm fits a q-dimensional
grid to a distribution of training patterns in IRd, q ≤ d (Kohonen, 1982).
SOMs were motivated by sensory maps in the brain, for example, the so-
matosensory map or the tonotopic map (Kohonen, 1989). A SOM consists of
a q-dimensional array8 of nodes; each node i has a location ri and a weight
vector wi (figure 1.7). The weight vectors are in the space of the training
patterns.

The algorithm consists of three steps, which are alternated until conver-
gence is reached. First, a training pattern x is drawn randomly. Second, the
node c is determined whose weight vector wc is closest to x,

c = argmin
i
||x−wi|| . (1.2)

Third, all weights are updated, depending on each nodes distance ||ri − rc||
to the best matching node c,

wi(t+ 1) = wi(t) + hic [x(t)−wi(t)] ∀ i . (1.3)

The neighborhood function hic is

hic = α(t) exp

(

−||ri − rc||2
2σ2(t)

)

. (1.4)

The learning rate α(t) and the radius of the neighborhood σ(t) both decrease
monotonically in time t. The neighborhood function ensures that the grid of

8Here, for simplicity, the discussion is limited to square grids, which are the most
common, but the algorithm is not restricted to them; for example, hexagonal grids were
also used (Kohonen, 1995).

18 CHAPTER 1. INTRODUCTION

y

x

z

ir

wi

Figure 1.7: Node locations (left: circles) and weight vectors (right: black dots).
Each node i with location ri has an associated weight vector wi in the space of
training patterns (dotted lines mark sample associations). The dashed lines and
curves indicate the manifold of training patterns.

weights has the same topology as the array of nodes. If the training patterns
lie on a q-dimensional manifold, the algorithm makes the grid of weights
to follow this manifold (figure 1.7, right). Many examples can be found in
Kohonen (1995).

The SOM algorithm can be easily extended by adding more parameters to
each node and by updating them in parallel to the weight vectors. With such
an extension, Ritter and Schulten (1986) used the SOM to learn sensorimotor
relations. Here, a training pattern consists of a pair (x,y) of sensor values x
and corresponding motor values y. Such a sensorimotor pattern is an element
in the space formed by the Cartesian product of the sensor and the motor
space. The SOM extension has two weight vectors for each node i, one for the
sensory input, win

i , and one for the motor output, wout
i . The computation

(1.2) of the best matching node is restricted to the sensory domain; but both

win
i and wout

i are updated according to (1.3) (wout
i is updated based on y,

and the neighborhood function may have different parameters).

This algorithm fits the grid of weight vectors (win
i ,w

out
i) to the sensori-

motor pattern distribution. The resulting link between a sensory input win
i

and a motor output wout
i provides a discrete mapping, usable for an inverse

model. To obtain a continuous mapping, Ritter et al. (1989) further added
a locally linear map to each node. The result was successfully applied to
control a robot arm with three degrees of freedom.

The restriction of the node competition (1.2) to the distance in sensory
space reduces the search space for the weights, but it makes the approach fail

1.5. LEARNING OF SENSORIMOTOR MODELS 19

motor
output

training patterns

sensory input

sensor SOM

2

y 1

y

wout

Figure 1.8: Failure of the sensorimotor extension of SOM on one-to-many map-
pings. The motor component wout is averaged over competing patterns y1 and
y2.

on one-to-many mappings (figure 1.8). The learning for win
i is independent of

wout
i . As a result, a classical SOM algorithm is applied solely to the sensory

domain, while wout
i is updated simultaneously. In the case of two possible

target values for one sensory input,wout
i is attracted to two different positions

y1 and y2 (because the node competition is independent of the distance to
y1 or y2). Thus, as a result from the update rule (1.3), wout

i will be averaged
among y1 and y2. For example, given that both y1 and y2 are drawn with
the same probability (p = 0.5), on average, wout

i is updated according to

wout
i (t+ 1) = wout

i (t) +
1

2
hic

[

y1 −wout
i (t)

]

+
1

2
hic

[

y2 −wout
i (t)

]

= wout
i (t) + hic

[

1

2
(y1 + y2)−wout

i (t)

]

. (1.5)

Therefore, the resulting relation between sensory input and motor output is
invalid.

Further limitations arise from the SOM grid structure. First, since senso-
rimotor manifolds are usually non-linear, many grid points are needed. With
increasing dimensionality q of the manifold, the number of necessary points
increases exponentially (the number of points per dimension to the power of
q). Soon (q > 3), this gets computationally unfeasible. As a solution to this
problem, Martinetz and Schulten (1990) suggested an extension to hierarchi-
cal SOM. A second limitation arises in real world applications: some sensor
values could be pure noise (or irrelevant to the sensorimotor map). Such

20 CHAPTER 1. INTRODUCTION

noise dimensions need to be filled with grid points (figure 1.9), resulting in
the same problems as mentioned above.

y

noise

x

z

Figure 1.9: Noise (in x direction) extends a one-dimensional relation between y
and z (solid curve) to a two-dimensional manifold. The grid points (black dots)
need to fill the whole manifold.

1.5.6 Parametrized self-organizing maps

Ritter (1993) presented an extension to the above SOM approach for learn-
ing sensorimotor maps, the ‘parametrized self-organizing map’ (PSOM). The
PSOM can cope with kinematic models of redundant robot arms (Walter
et al., 2000). I first describe the training phase and then the recall phase.

The PSOM assumes that the training patterns lie on a sensorimotor mani-
fold. In training, a continuous mapping is constructed that maps a parameter
space (resembling the array in the SOM) onto the sensorimotor manifold. As
for the SOM, the parameter space is based on an array of nodes ri, and each
node i has a weight vectorwi ∈ IRd (here, element in the sensorimotor space).
A continuous mapping from r to w is achieved by a sum of basis functions
Hi(r) (one for each node i),

w(r) =
∑

i

Hi(r)wi . (1.6)

These basis functions are predefined and fulfill Hi(rj) = δij ∀i, j (Ritter,
1993). Thus, the mapping interpolates between the given grid points wi.
Different from the SOM extension in section 1.5.5, only a few grid points
are needed to describe a non-linear sensorimotor manifold. The grids usually
have a side length of three points (Walter et al., 2000). In applications, mostly
the motor components (for example, the joint angles of a robot arm) are

1.5. LEARNING OF SENSORIMOTOR MODELS 21

chosen to form the parameter space, which further needs to be equidistantly
sampled (Walter et al., 2000). The corresponding sensor values can be gained
by executing the motor commands (or by taking the posture given by the
joint angles).

The recall works like a pattern completion. The completion of a vector
x is gained by finding the parameter r that minimizes the distance between
x and the sensorimotor manifold w(r). Since x is only partially given, only
the distance to the input components is evaluated,

rmin = argmin
r

d
∑

j=1

gj(xj − wj(r))
2 . (1.7)

Here, gj > 0 for input components, and gj = 0 for output components. The
minimization needs to be solved numerically (Ritter, 1993; Walter et al.,
2000).

This recall method has the advantage that it works in any direction. Thus,
for example, a forward model can be changed into an inverse model by ad-
justing the gj values. Further, the method can be applied to redundant robot
arms. Out of many possible postures, the one with the smallest distance to
the manifold w(r) is chosen, and not an average as in section 1.5.5.

The PSOM algorithm can achieve a remarkable accuracy (for example,
a mean deviation of 1% of the working space for a three degrees-of-freedom
robot finger (Walter et al., 2000)), but also here limitations exist. First,
we need to know the topology of the sensorimotor patterns. Second, the
mapping w(r) requires a smooth sensorimotor manifold. Third, as in the
previous approach, it is not clear how the algorithm can cope with noise
dimensions.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Modeling of data distributions

The data we try to model are patterns whose coordinates include all sen-
sory variables and all motor variables1. The set of these patterns forms a
distribution in a sensorimotor space. In this thesis, the focus is on finding a
simplified representation of such a distribution. That is, learning is based on
finding a statistical description of the data, instead of constructing a neural
network. Like a network, however, the proposed algorithms will have a train-
ing phase, in which the distribution is approximated, and a recall phase, in
which a partially given input pattern is completed, as in a recurrent neural
network (section 1.5.4). These training and recall phases can be also found in
the self-organizing map (section 1.5.5) and the parameterized self-organizing
map (section 1.5.6). Different from these algorithms, however, the present
approach is based on principal component analysis (PCA). Since PCA can
only give a linear approximation of a data distribution, two extensions are
used. The first extends the single PCA to a mixture of many analyzers. Here,
each analyzer approximates linearly a locally confined region of the pattern
space. This restriction of PCA is called ‘local PCA’. PCA itself cannot sepa-
rate the space into these regions. The separation is accomplished by linking
local PCA to vector quantization. The second extension (kernel PCA) uses
only one analyzer, but approximates linearly the data in a higher-dimensional
space into which they were mapped. This chapter describes the background
of these two extensions.

2.1 Principal component analysis (PCA)

Principal component analysis is a widely used tool for dimension reduction
(Diamantaras and Kung, 1996). Let xi ∈ IRd, where i = 1, . . . , n, be the
training patterns. The principal components are a set of q < d orthonormal

1In this thesis, the ‘motor variables’ may also be proprioception, like, for example, the
posture of a robot arm.

23

24 CHAPTER 2. MODELING OF DATA DISTRIBUTIONS

vectors and span a subspace in the major directions into which the patterns
extend (figure 2.1).

w1

x

y

Figure 2.1: The principal component w1 points into the direction of maximum
variance. The gray dots are the training patterns. The intersection of the dashed
lines is the center of the pattern distribution.

In this section, we assume that the patterns are centered around the origin
(without loss of generality). Let y be the projection onto a subspace,

y = WTx . (2.1)

W is a d×q matrix that contains the principal components as columns. The
vector y is a dimension-reduced representation of x. Let x̂ be the reconstruc-
tion of x given only the vector y,

x̂ = Wy . (2.2)

The goal of PCA is to set the subspace such that the mean reconstruction
error Erec is minimized,

Erec =
1

n

n
∑

i=1

‖xi − x̂i‖2 . (2.3)

This goal is equivalent to finding the q major directions of maximal variance
within the set of patterns {xi} (Diamantaras and Kung, 1996). Moreover, it
is equivalent to the principal components being the first q eigenvectors wl of
the covariance matrix C of the pattern set (Diamantaras and Kung, 1996),

C =
1

n

n
∑

i=1

xix
T
i . (2.4)

2.1. PRINCIPAL COMPONENT ANALYSIS (PCA) 25

The corresponding eigenvalue equation is

Cwl = λlwl . (2.5)

The eigenvalue λl is the variance of the distribution {xi} in the direction of
wl. The following sections describe how neural networks can extract principal
components and how PCA can be linked to the probability density of a
pattern distribution.

2.1.1 Neural networks for PCA

Principal components can be extracted using single-layer feed-forward neural
networks (Oja, 1989; Sanger, 1989; Rubner and Tavan, 1989; Diamantaras
and Kung, 1996). These networks learn unsupervised by using variants of the
Hebbian rule. They provide an iterative solution to (2.5) and do not need the
computation of C, which could be computationally expensive (it is O(d 2n)).
Networks extracting principal components further provide a biological basis
for PCA. One example of such a PCA algorithm is Oja’s rule.

Oja’s algorithm (Oja, 1982) uses a single neuron with an input vector x,
a weight vector w, and an output y. The output can be written as y = wTx
(this corresponds to (2.1)). According to Oja’s rule, after a training pattern
x is presented, the weights change by a Hebbian term minus a forgetting
function:

w(t+ 1) = w(t) + εyx− αy2w(t) (2.6)

ε is the Hebbian learning rate, and α is a constant. The forgetting term is
necessary to bound the magnitude of w. For the average update over all
training patterns xi, the fixed points of (2.6) can be computed. In turns out
that they are the eigenvectors of the covariance matrixC, and the eigenvector
with the largest eigenvalue is the only stable point (Oja, 1982). Thus, Oja’s
rule extracts the principal component.

2.1.2 Probabilistic PCA

Probabilistic PCA links PCA to the probability density of patterns xi (Tip-
ping and Bishop, 1997). The given set {xi} is assumed to originate from a
probability density p(x). Further, x is assumed to be a linear combination
of a vector y ∈ IRq with density p(y) and a noise vector e ∈ IRd with density
p(e),

x = Uy + e . (2.7)

26 CHAPTER 2. MODELING OF DATA DISTRIBUTIONS

The goal is to find U, which is a d× q matrix. Both densities p(y) and p(e)
are assumed to be uniformly Gaussian with variance one respective σ2. Thus,
the density p(x) is defined uniquely up to the parameters U and σ,

p(x) = (2π)−d/2(detB)−1/2 exp

(

−1

2
xTB−1x

)

(2.8)

with B = σ2I+UUT (Tipping and Bishop, 1997). Probabilistic PCA deter-
mines U and σ such that the patterns xi if drawn from p(x) are most likely
(Tipping and Bishop, 1997). That is, the likelihood, which is

L =

n
∏

i=1

p(xi) , (2.9)

is maximized (see appendix A.2 for an example of the maximum likelihood
principle). The result of this optimization gives the matrix U (Tipping and
Bishop, 1997),

U = W(Λ− σ2I)1/2 R . (2.10)

The columns of the matrix W are the eigenvectors of the covariance ma-
trix of {xi}; the diagonal matrix Λ contains the corresponding eigenvalues,
and R is an arbitrary rotational matrix (note, y has a uniform Gaussian
distribution). The noise variance σ2 turns out to be the residual variance per
dimension,

σ2 =
1

d− q

d
∑

l=q+1

λl . (2.11)

To evaluate (2.11), only the q principal eigenvalues and the total variance
(sum of variances over all dimensions, which equals the trace of the covari-
ance matrix) need to be known. It is not necessary to compute the d − q
minor principal components. Thus, the introduction of the noise allows the
density p(x) to be defined over the whole IRd, while using a reduced param-
eter set (obtained by PCA). Equation (2.11) shows how fast p(x) decreases
orthogonal to the subspace spanned by the principal components.

2.2 Vector quantization

Vector quantization describes a pattern set using a reduced number of so-
called ‘code-book’ vectors. We assume again that n training patterns xi ∈ IRd

are given. Let m < n be the number of code-book vectors cj ∈ IRd. In

2.2. VECTOR QUANTIZATION 27

the final state, each training pattern is assigned to one code-book vector.
The optimal position of code-book vectors is usually gained by finding the
minimum of the sum E of squared distances2 between each code-book vector
and its assigned patterns,

E =
∑

ij

P (j|xi) ‖xi − cj‖2 . (2.12)

P (j|xi) is the probability that xi belongs to cj. For the final state, P (j|xi) =
1 if xi is assigned to cj, and P (j|xi) = 0 otherwise. A pattern is assigned
to the code-book vector that has the smallest Euclidean distance to that
pattern. Thus, the code-book vectors induce a Voronoi tessellation of space
(figure 2.2). In each of the separated regions, the position of the code-book
vector is the center-of-mass of the local pattern distribution (otherwise (2.12)
cannot be minimal).

Figure 2.2: Code-book vectors (crosses) and the resulting Voronoi tessellation
(dashed lines are boundaries, equidistant from two respective codebook vectors).
Training patterns are drawn as gray dots.

The difficulty in finding the optimal {cj} is that E has many local minima.
No general solution exists. Instead, various iterative algorithms exist that
find approximate solutions. The algorithms can be divided into those that
use hard-clustering and those that use soft-clustering. In hard-clustering,
P (j|xi) is binary (throughout the iteration), and each xi can be only assigned
to one code-book vector. In soft-clustering, P (j|xi) can take any value in the
interval [0;1].

2Here, the discussion is limited to the Euclidean distance, other measures like the
Holder norm, or the Minkowski norm were also used (Linde et al., 1980).

28 CHAPTER 2. MODELING OF DATA DISTRIBUTIONS

The algorithms can be further divided into on-line and batch versions.
On-line versions update code-book vectors in each iteration step based on
just one (randomly drawn) training pattern xi (as for the self-organizing
map, section 1.5.5). The update rule is usually written as

cj(t+ 1) = cj(t) + ε(t)P (j|xi) [xi − cj(t)] . (2.13)

The change of cj is in the direction of the negative gradient of (2.12). ε(t) is
a learning rate, which can depend on time. In contrast, batch versions use
all training patterns for each step. Here, the algorithm alternates between
computing all P (j|xi) based on a given distribution {cj}, and optimizing all
cj given P (j|xi). This algorithm is a variant of the expectation maximization
algorithm (Dempster et al., 1977). The ‘maximization’ step is a minimization
of the error E (which maximizes the likelihood, see section 2.3.1).

The following sections describe the hard-clustering algorithm ‘k-means’
and provide more details about soft-clustering algorithms. Two examples
are described: ‘deterministic annealing’ and ‘Neural Gas’.

2.2.1 K-means

The most used hard-clustering algorithm is k-means (Lloyd, 1982; Moody
and Darken, 1989). Here, in each iteration step, first, based on the Voronoi
tessellation, for all j, P (j|xi) is calculated for one xi (on-line version) or
all patterns (batch version). Then, in the on-line version, the code-book
assigned to xi is moved closer to xi (using (2.13) with ε(t) = ε). In the
batch version, each cj is moved to the center of its assigned patterns (which
minimizes (2.12) given the assignment P (j|xi)). These steps are repeated
until convergence is reached. The disadvantage of k-means is that it is prone
to end at a local minimum, and therefore, its success depends on the initial
choice of {cj}.

2.2.2 Soft-clustering

In soft-clustering, many code-book vectors compete for one pattern xi. A
common assignment P (j|xi) is the normalized Gaussian function (see, for
example, Yair et al. (1992)),

P (j|xi) =
exp

(

−β‖xi − cj‖2
)

∑

j exp (−β‖xi − cj‖2)
. (2.14)

The parameter β controls the influence range of a pattern xi or code-book
vector. For the limit β → ∞, the algorithm is the same as hard-clustering.
P (j|xi) is normalized such that

∑

j P (j|xi) = 1 (this allows a probabilistic

2.2. VECTOR QUANTIZATION 29

interpretation). Equation (2.14) can be derived using the maximum entropy
principle. From all possible sets {P (j|xi)} that result in a given total cost
E according to (2.12), the Gibbs distribution (2.14) maximizes the entropy
(Rose et al., 1990). Thus, the assignment (2.14) does not rely on any as-
sumptions about the distribution of patterns. In this physical perspective, β
has the role of an inverse temperature. The soft-clustering approach can be
extended to an annealing process, which helps to avoid local minima (Rose
et al., 1990).

2.2.3 Deterministic annealing

Deterministic annealing extends soft-clustering to an annealing process (Rose
et al., 1990; Rose, 1998). For each temperature value, the algorithm iterates
between the calculation of all P (j|xi) and the update of the code-book vectors
(in batch mode), until convergence is reached. The annealing starts with
a high temperature (low β). Here, all code-book vectors converge to the
center of the pattern distribution (independent of their initial positions).
Below a critical temperature the vectors start to split. Further decreasing
the temperature (increasing β) leads to more splittings until all code-book
vectors are separate. The annealing can therefore avoid (if it is sufficiently
slow) the convergence to local minima of (2.12). Deterministic annealing is
originally formulated as batch method, but also an on-line version exists (Qiu
et al., 1994).

2.2.4 Neural Gas

Martinetz et al. (1993) presented an algorithm called ‘Neural Gas’ that out-
performs deterministic annealing (Rose et al., 1990). Neural Gas is also a
variant of soft-clustering, and it also uses annealing. In contrast, Neural Gas
has a different (heuristic) assignment, and it can be only carried out as an
on-line version.

The algorithm starts by randomly choosing m data points as starting
points for the m code-book vectors. The annealing consists of a predefined
number of tmax steps. During each annealing step t, a pattern xi is randomly
drawn from the training set. Then, the code-book vectors are sorted in the
order of their Euclidean distance to xi. Let k(xi, cj(t)) be the resulting
rank of each code-book vector, with k = 0 for the closest vector, and k =
m − 1 for the most distant vector. The soft-assignment is then given by
the function hij% = exp(−k(xi, cj(t))/%). The parameter % is a measure of
the neighborhood range. Given this assignment, all code-book vectors cj are
updated according to

30 CHAPTER 2. MODELING OF DATA DISTRIBUTIONS

cj(t+ 1) = cj(t) + ε(t)hij%(t) [xi − cj(t)] . (2.15)

During the annealing process both parameters ε and % decrease exponentially,
%(t) = %(0)[%(tmax)/%(0)]

(t/tmax), and ε(t) = ε(0)[ε(tmax)/ε(0)]
(t/tmax). At the

end of the annealing, the algorithm changes to on-line k-means, and thus, also
(locally) minimizes (2.12). The exponential decay of ε enforces convergence.
Neural Gas is stable and does not depend on the initial configuration of {ci}
(Martinetz et al., 1993).

2.3 Mixture of local PCA

A mixture of local PCA combines vector quantization with PCA. Code-book
vectors are replaced by local PCA units. Each unit has a center, and the
PCA needs to be computed relative to this center. The principal components
point into the directions of major variance of the local distribution of assigned
patterns. Different from vector quantization, here no general cost function
exists. Some algorithms (Hinton et al., 1997; Kambhatla and Leen, 1997)
try to minimize a global reconstruction error, which is the sum over the
reconstruction error (2.3) for each unit. Other algorithms use a mixture of
Gaussian functions to model the density of the training data, and therefore,
choose the parameters such that the likelihood of the data is maximized
(Bishop, 1995).

The first group of algorithms assigns a pattern to the unit that recon-
structs the pattern with a minimal error (2.3). Thus also distant patterns
are assigned to a unit as long as they lie in the direction of the principal
components. However, for modeling non-linear manifolds this is of a dis-
advantage because the units are not locally confined and protrude out of
the manifold (Tipping and Bishop, 1999; Möller and Hoffmann, 2004). On
the other hand, density models are locally confined and are discussed in the
following.

2.3.1 Gaussian mixture models

Gaussian mixture models assume that the patterns xi origin from a proba-
bility density p(x) (Bishop, 1995). This density is a linear combination of
Gaussian functions p(x|j),

p(x|j) = 1

Nj
exp

(

−1

2
(x− cj)

TAj(x− cj)

)

. (2.16)

The normalization constant Nj is chosen such that the integral of p(x|j) over
IRd equals one (a necessary condition for a probability density). The nega-

2.3. MIXTURE OF LOCAL PCA 31

tive exponent is a weighted squared distance (called Mahalanobis distance)
between x and the center cj; the corresponding weights are given by the
symmetric matrix Aj. The boundary that has a Mahalanobis distance to
the center cj equal to one is a hyper-ellipsoid.

The density p(x) is a weighted sum of the local densities p(x|j),

p(x) =

m
∑

j=1

P (j)p(x|j) . (2.17)

To normalize p(x), the weights P (j) must sum to one,
∑m

j=1 P (j) = 1. There-

fore, P (j) can be interpreted as the probability that patterns originate from
the unit j. It is called prior probability.

The goal of the mixture model is to find the unknown parameters cj, Aj,
and the priors P (j) for each unit j such that the likelihood, L =

∏n
i=1 p(xi),

to obtain the distribution {xi} given the density p(x) is maximal (Bishop,
1995). To solve this optimization problem it is common to use a variant of
the expectation maximization algorithm (Bishop, 1995). It consists of two
steps with iterate until convergence is reached. In the expectation step, the
soft-assignment P (j|xi) for all j and i is computed based on a given estimate
of the parameters cj, Aj, and P (j). P (j|xi) is called posterior probability.
It is computed using Bayes’ theorem (see appendix A.1),

P (j|xi) =
p(xi|j)P (j)

p(xi)
. (2.18)

In the special case of uniform Gaussians that all have the same width and
weight P (j), (2.18) is the same as the Gibbs distribution (2.14).

In the maximization step, the Gaussian’s parameters cj,Aj, and P (j) that
maximize the likelihood given all P (j|xi) can be directly computed (Bishop,
1995). The result is that the center cj is the weighted mean of the set {xi},

cj =

∑n
i=1 P (j|xi)xi
∑n

i=1 P (j|xi)
, (2.19)

and the matrix Aj is the inverse of the weighted covariance matrix Cj,

Cj =

∑n
i=1 P (j|xi)(xi − cj)(xi − cj)

T

∑n
i=1 P (j|xi)

. (2.20)

The inverse can be computed by extracting all eigenvectors of Cj. Thus,
the axes of the mentioned hyper-ellipsoid are the principal components of
the local data distribution. The size of this hyper-ellipsoid is given by the
eigenvalues λlj from the PCA (the semi-axis length of unit j in the direction

l equals
√

λlj). Finally, the result for the prior probabilities is

32 CHAPTER 2. MODELING OF DATA DISTRIBUTIONS

P (j) =
1

n

n
∑

i=1

P (j|xi) . (2.21)

It can be shown that alternating these expectation and maximization steps
increases the likelihood L in each iteration step (Bishop, 1995). However, lo-
cal maxima are not avoided. Further, single isolated data points (outliers)
can make the algorithm unstable (Archambeau et al., 2003). If just one
pattern is assigned to a unit (that is, the other patterns have almost zero
P (j|xi)) the variance of the local Gaussian collapses to zero. As an improve-
ment to the local minima problem, annealing schemes (as discussed for the
vector quantization, section 2.2) were suggested (Meinicke, 2000; Albrecht
et al., 2000; Meinicke and Ritter, 2001). Here, a global variance linked to the
width of each Gaussian is gradually reduced during annealing.

The Gaussian mixture model as it is presented here has the disadvantage
that all eigenvectors of the local covariance matrix need to be extracted.
However, this problem can be overcome if probabilistic PCA is used instead
of standard PCA.

2.3.2 Mixture of probabilistic PCA

Tipping and Bishop (1999) extended the probabilistic PCA (section 2.1.2) to
a mixture model. Different from the Gaussian mixture model, the probabilis-
tic PCA extension needs only a set of q < d principal components. The rest
of the density’s variance is given by the noise σ2, which is the mean residual
local variance. In the algorithm, the density (2.16) needs to be therefore
replaced by the density used for probabilistic PCA. Apart from this substi-
tution, the algorithm is identical to the classical Gaussian mixture model.

2.4 Kernel PCA

Different from the mixture models, kernel PCA (Schölkopf et al., 1998b) just
works with a single PCA. It is an extension of PCA to non-linear distribu-
tions. Instead of directly doing a PCA, the n data points xi are mapped into
a higher-dimensional (possibly infinite-dimensional) feature space,

xi → ϕ(xi) . (2.22)

As it turns out later, the computation of this mapping can be omitted. In
the feature space, principal components are extracted. That is, the following
equation needs to be solved (here, we first assume that {ϕ(xi)} has zero
mean, see section 2.4.2):

2.4. KERNEL PCA 33

λw = Cw , (2.23)

with the covariance matrix C = 1
n

∑n
j=1ϕ(xj)ϕ(xj)

T . From the definition

of C follows that Cw is a linear combination of the vectors ϕ(xi). Thus, w
must lie in the span of ϕ(x1), . . . ,ϕ(xn). Hence, we can write

w =

n
∑

i=1

αiϕ(xi) . (2.24)

Combining (2.23) and (2.24) gives

λ

n
∑

i=1

αiϕ(xi) =
1

n

n
∑

i,j=1

αiϕ(xj)
(

ϕ(xj)
Tϕ(xi)

)

, (2.25)

which is equivalent to the set of n equations

λ

n
∑

i=1

αi
(

ϕ(xi)
Tϕ(xl)

)

=
1

n

n
∑

i,j=1

αi
(

ϕ(xj)
Tϕ(xl)

) (

ϕ(xj)
Tϕ(xi)

)

∀ l .

(2.26)
The direction from (2.26) to (2.25) is fulfilled because the left side of (2.25)
is in the span of ϕ(x1), . . . ,ϕ(xn), and (2.26) defines all n projections on
ϕ(xi). Equation (2.26) has the favorable property that it is written entirely
with scalar products in the feature space. Hence, we do not need to carry
out the transformation ϕ, which would be computationally impossible for an
infinite-dimensional feature space. It is enough to work in the original space.
Thus, instead of working with the scalar product ϕ(x)Tϕ(y), we are only
working with a kernel function k(x,y) = ϕ(x)Tϕ(y). For the given data
points, this function can be written as a matrix K, with Kij = k(xi,xj).
Using the kernel matrix, (2.26) can be written as

nλKα = K2α , (2.27)

with α = (α1, . . . , αn)
T . As shown in appendix C.2, (2.27) is equivalent to

nλα = Kα . (2.28)

Thus, the vector α for each principal component can be obtained by extract-
ing the eigenvectors of K. For further processing, the principal component
w needs to be normalized to have unit length. This can be also established
by working solely with the kernel,

34 CHAPTER 2. MODELING OF DATA DISTRIBUTIONS

||w||2 =

(

n
∑

i=1

αiϕ(xi)

)T (n
∑

j=1

αjϕ(xj)

)

= αTKα = nλαTα , (2.29)

which results in a normalization rule for α.
To apply kernel PCA, a data point’s features (the projections on the

principal components) need to be extracted, and the formalism needs to be
adjusted to distributions that do not have zero mean in feature space. These
two points are addressed in the following sections. Furthermore, a short list
of common kernel functions is given.

2.4.1 Feature extraction

The principal components are not directly accessible because ϕ(x) is not
known. However, projections onto the components can be computed
(Schölkopf et al., 1998b). A projection f of a pattern z in the original space
onto a principal component in feature space can be computed as follows:

f = ϕ(z)Tw =

n
∑

i=1

αik(z,xi) . (2.30)

The computational load for each projection onto a principal component is
high, n evaluations of k(z,xi) are needed. In appendix B.2, a speed-up is
described that uses a reduced set of m < n patterns, instead of {xi}. This
reduces the computation time by the factor m/n (Schölkopf et al., 1998a).

2.4.2 Centering in feature space

So far, we have assumed that {ϕ(xi)} has zero mean, which is usually not
fulfilled. Therefore, the formalism needs to be adjusted (Schölkopf et al.,
1998b). The following set of points will be centered:

ϕ̃(xi) = ϕ(xi)−
1

n

n
∑

r=1

ϕ(xr) . (2.31)

The above analysis holds if the covariance matrix is computed from ϕ̃(xi).
Thus, the kernel matrix Kij = ϕ(xi)

Tϕ(xj) needs to be replaced by K̃ij =

ϕ̃(xi)
T ϕ̃(xj). Using (2.31), K̃ can be written as,

2.4. KERNEL PCA 35

K̃ij = ϕ(xi)
Tϕ(xj)−

1

n

n
∑

r=1

ϕ(xi)
Tϕ(xr)−

1

n

n
∑

r=1

ϕ(xr)
Tϕ(xj)

+
1

n2

n
∑

r,s=1

ϕ(xr)
Tϕ(x s)

= Kij −
1

n

n
∑

r=1

Kir −
1

n

n
∑

r=1

Krj +
1

n2

n
∑

r,s=1

Krs . (2.32)

Therefore, we can evaluate the kernel matrix for the centered data using
the known matrix K. For the remainder of this thesis, I denote with α the
eigenvectors of K̃ instead of K, and they are normalized according to (2.29)
using the eigenvalues of K̃. The principal components are w̃ =

∑n
i=1 αiϕ̃(xi).

2.4.3 Common kernel functions

The kernel function needs to be a scalar product in some feature space. A suf-
ficient condition is that the kernel matrix is positive semidefinite (Schölkopf
et al., 1998b; Schölkopf and Smola, 2002, p. 44). Some common kernel
functions that fulfill this condition are the polynomial kernel,

k(x,y) = (xTy)d (2.33)

with a constant integer d, the Gaussian kernel,

k(x,y) = exp

(

−‖x− y‖2
2σ2

)

(2.34)

with a constant σ > 0, and the inverse multiquadric kernel,

k(x,y) =
1

√

‖x− y‖2 + c
(2.35)

with a constant c > 0 (Schölkopf and Smola, 2002, p. 54). The last two
functions result in a kernel matrix with full rank (Micchelli, 1986). That is,
all eigenvectors are linearly independent. Thus, the dimensionality of the
feature space is not restricted (it is infinite).

36 CHAPTER 2. MODELING OF DATA DISTRIBUTIONS

Chapter 3

Mixture of local PCA

This chapter presents two new extensions to existing models to obtain a mix-
ture of local PCA for modeling data distributions. The first section gives a
motivation for using local PCA instead of code-book vectors or univariate
densities. The following two sections present the two learning variants. The
first variant is an extension of the vector quantizer Neural Gas (section 2.2.4)
to local PCA. The second variant is a modification of the mixture of proba-
bilistic PCA (section 2.3.2). The new variants were tested on synthetic data
distributions and on a digit classification task. Finally, their advantages and
disadvantages relative to each other are discussed. For the overall chapter,
a training set consists of points xi ∈ IRd with i = 1, . . . , n, and the mixture
contains m units.

3.1 Motivation for local PCA

When describing a data distribution with a mixture model the question arises
what kind of units should the mixture contain. The simplest local descrip-
tion is a point, the second simplest a linear model, which can be obtained
from a local PCA. In a Gaussian density model of the data points, a point
corresponds to a uniform Gaussian function, and a local PCA corresponds to
a multivariate Gaussian (section 2.3.1). Thus, the local iso-density surface is
a sphere respective an ellipsoid. Therefore, the decision between points and
local PCA can be also regarded as a decision between spheres and ellipsoids.
Despite its greater complexity, local PCA is favorable over a point for the
following reasons. An ellipsoid can describe a local structure for which many
spheres are needed (figure 3.1.A). Furthermore, sensorimotor distributions
are usually constrained locally to subspaces with fewer dimensions than the
space of the training data. Thus, directions exist in which locally the distri-
bution has zero variance (or almost zero because of noise). PCA can omit
directions of zero variance; a point cannot (figure 3.1.B). Using local PCA

37

38 CHAPTER 3. MIXTURE OF LOCAL PCA

also helps to cope with the problem of noise dimensions as mentioned in sec-
tion 1.5.5. An ellipsoid can extend with one of its principal components into
the additional noise dimension; the number of points needed to take care
of the additional variance increases over-proportionally (compare figure 3.1
with figure 1.9).

x

y

y

x

z

BA

Figure 3.1: Advantage of ellipsoidal units opposed to spheres. A) An ellipse
can describe a structure (gray dots) for which many circles are needed. B) The
manifold surrounded by solid curves and dashed lines can be approximated by only
two flat ellipsoids (thick arrows mark their principal axes).

3.2 Extension of Neural Gas to local PCA

The vector-quantization algorithm Neural Gas (section 2.2.4) is extended
such that each code-book vector includes a local PCA (Hoffmann and Möller,
2003; Möller and Hoffmann, 2004). Henceforth, the new algorithm is called
NGPCA. We chose Neural Gas because it results in a near homogeneous
coverage of data distributions independent of the initial position of code-
book vectors. First, NGPCA is described; then, a modification about the
competition between units is presented. In the last part of this section,
simulations demonstrate the operation of the algorithm.

3.2.1 Algorithm

In the extension of Neural Gas to NGPCA, a code-book vector is replaced by
a hyper-ellipsoid. An ellipsoid has a center cj, and axes given by a local PCA,
which extracts q eigenvectors wl

j and eigenvalues λlj with l = 1, . . . , q. The
size of the ellipsoid in the direction of the d − q minor components is given

3.2. EXTENSION OF NEURAL GAS TO LOCAL PCA 39

by the mean residual variance σ2
j in these directions. The algorithm has the

same annealing scheme as Neural Gas, and it also has the same parameters.
Again, at the beginning of each annealing step, a data point is randomly
drawn from the training set. After presenting a point x the centers cj are
updated as the code-book vectors in Neural Gas,

cj(t+ 1) = cj(t) + αj · [x− cj(t)] . (3.1)

The weight αj is defined by αj = ε · exp(−rj/%). The learning rate ε and
the neighborhood range % decrease exponentially during training. rj is again
the rank of the unit j with respect to x. In the following, the unit index j
is omitted for simplicity. All equations need to be evaluated for each unit
separately.

The ranking of the units cannot depend on the Euclidean distance any-
more, since this would ignore the shape of the ellipsoids. Instead, an elliptical
error measure is chosen,

E(x) = ξTWΛ−1WTξ +
1

σ2

(

ξTξ − ξTWWTξ
)

+ ln detΛ+ (d− q) lnσ2 .

(3.2)
This measure is a normalized Mahalanobis distance plus reconstruction er-
ror (Hinton et al., 1997). ξ = x − c is the deviation of the vector x from
the center of a unit. The matrix W contains in its columns the eigenvec-
tors wl, and the diagonal matrix Λ contains the eigenvalues λl. It can be
shown (appendix C.1) that this error measure is the same (up to a con-
stant) as the double negative logarithm of the local probability density given
in probabilistic PCA. Thus, a unit can be interpreted as a local density
p(x) = (2π)−d/2 exp(−E(x)/2), and the units are ranked in the order of the
probabilities of x originating from the single units. However, the computa-
tion of the probability is not necessary since the same result is obtained by
ordering the units using the error E(x). The unit resulting in the smallest
E(x) has rank zero, and the one with the largest E(x) has rank m− 1.

The second term in (3.2) is the reconstruction error divided by σ2. σ
depends on the estimate of the total residual variance vres, which is updated
according to

vres(t+ 1) = vres(t) + α ·
(

ξTξ − ξTWWTξ − vres(t)
)

. (3.3)

The total residual variance is evenly distributed among all d − q minor di-
mensions by

σ2 =
vres
d− q

. (3.4)

40 CHAPTER 3. MIXTURE OF LOCAL PCA

This equation is the same as for the noise in probabilistic PCA (2.11). To
adjust the principal axes and their lengths, we do one step with an on-line
PCA method:

{W(t+ 1),Λ(t+ 1)} = PCA{W(t),Λ(t), ξ(t), α(t)} . (3.5)

We use a PCA algorithm similar to the robust recursive least square algo-
rithm (RRLSA) (Ouyang et al., 2000). RRLSA is a sequential network of
single-neuron principal component analyzers based on deflation of the input
vector (Sanger, 1989). While the wl are normalized to unit length, internally
the algorithm works with unnormalized w̃l, which are updated according to

w̃l(t+ 1) = w̃l(t) + α ·
(

ξ(l)yl − w̃l(t)
)

, for l = 1, . . . , q . (3.6)

yl is a component of the vector y = WTξ. The deflated vector ξ(l) is com-
puted by iterating

ξ(l+1) = ξ(l) −wlyl starting with ξ(1) = ξ . (3.7)

After each step t, the eigenvalue and eigenvector estimates are obtained from

λl = ‖w̃l‖, wl =
w̃l

‖w̃l‖ , for l = 1, . . . , q . (3.8)

Since the orthogonality of W is not fully preserved for each step, the algo-
rithm has to be combined with an orthogonalization method, here we used
Gram-Schmidt (Möller, 2002). Orthogonality is essential for the computation
of the error (3.2). This orthogonalization concludes one annealing step.

The unit centers are initialized by randomly chosen examples from the
training set. The eigenvector estimates are initialized with random orthogo-
nal vectors. The eigenvalues λlj and the variances σ2

j are initially set to one.
To avoid zero variance in a direction during the computation of the local
PCA, a uniform noise randomly chosen from the interval [−0.0005; 0.0005]
is added to each component of a randomly drawn data point (for all experi-
ments).

3.2.2 Alternative distance measure

For some applications, it proved to be of advantage to modify the error
measure E(x). The error (3.2) depends on the size of the hyper-ellipsoid.

Its volume is proportional to V =
√
detΛσd−q. For a big ellipsoid, (3.2)

has therefore a huge bias, namely 2 lnV . Thus, if the other ellipsoids are
much smaller, this huge ellipsoid often has a high rank, independent of the

3.2. EXTENSION OF NEURAL GAS TO LOCAL PCA 41

Euclidean distance of x to the center of the ellipsoid. Since the weight α
decreases exponentially with the rank, α is almost zero, and the ellipsoid
cannot change its size anymore, it is ‘dead’ (for example, figure 3.8.A). Thus,
to avoid dead units, we tested an alternative error measure that is indepen-
dent of the volume of the ellipsoid. This can be achieved by normalizing λl

and σ such that the resulting volume Ṽ is one. Let λ̃l and σ̃ be the normalized
values. They can be computed by

λ̃l =
λl

d
√
V 2

σ̃ =
σ

d
√
V

. (3.9)

Using these substitutions, it can be straight-forwardly verified that the new
volume Ṽ = σ̃d−q

∏q
l=1 λ̃

l/2 fulfills Ṽ = 1. To compute the modified error, we
replace λl and σ by their normalized values, and then we use the substitution
(3.9) to obtain the error again in the original variables,

Ẽ(x) =

(

ξTWΛ−1WTξ +
1

σ2

(

ξTξ − ξTWWTξ
)

)

V 2/d . (3.10)

Here, the logarithm terms can be omitted because they are the same for all
units. The modified algorithm uses (3.10) instead of (3.2) for the competition
of the units. Everything else stays unchanged. The ellipsoids are still allowed
to change their size according to the local PCA. In the following, this algo-
rithm will be called ‘NGPCA-constV’, in contrast to NGPCA, which uses
(3.2) for the competition.

3.2.3 Simulations

The operation of the algorithm is demonstrated on two synthetic ring-ling-
square distributions. The data points in these distributions are uniformly
distributed over the area of a ring, a line, and a square. The outer radius of
the ring equals 1.0. The first variant consists of 850 data points (figure 3.2);
the second is much more sparse and contains only 85 points (figure 3.3).

In this section, all tests used the same parameters. Ten units were used.
For each, two principal components were extracted. The further training
parameter settings were %(0) = 1.0, %(tmax) = 0.001, ε(0) = 0.5, ε(tmax) =
0.001, and tmax = 30 000. The quality of a fitted mixture model was eval-
uated by computing log-likelihoods. As mentioned before, each unit can be
interpreted as a local probability density, p(x|j) = (2π)−d/2 exp(−Ej(x)/2)

42 CHAPTER 3. MIXTURE OF LOCAL PCA

(appendix C.1). These local densities allow the definition of a total density
underlying the data distribution. It remains to define the priors, the weights
of the local units. The prior P (j) is set equal to the fraction of data points
assigned to unit j. This assignment is obtained using hard-clustering based
on (3.2). Given the priors, the log-likelihood per pattern is

L =
1

n

n
∑

i=1

ln

m
∑

j=1

P (j)p(xi|j) . (3.11)

To compute p(x|j), NGPCA-constV uses (3.2) for Ej(x) and (3.10) to obtain
the prior P (j), since the modification just affects the competition between
units.

t=1 t=1000

t=3000 t=5000

t=10000

L = -2.19 L = -1.95

L = -1.67L = -1.71

t=30000

L = -3.18 L = -2.35

Figure 3.2: Training of NGPCA, shown at different annealing steps t. For each
step, the log-likelihood per pattern L is shown. The length of each ellipse semi-axis

is
√

λl
j.

3.3. EXTENSION OF THE MIXTURE OF PROBABILISTIC PCA 43

The first test, using NGPCA, shows the incremental adjustment of the
ellipses to the ring-line-square distribution with 850 points (figure 3.2). Here,
only one training cycle is shown, but the performance was stable over different
training cycles. In ten cycles, the final fitted model resembled the one shown
in figure 3.2, and the final L ranged between −1.669 and −1.665. NGPCA-
constV resulted in similar fitted models; here, the final L ranged between
−1.688 and −1.668. However, the time evolution was a bit different: single
large ellipses as in figure 3.2 (for t = 1000, 3000, and 5000) did not appear.
Instead, the sizes of the ellipses were more balanced. Further examples can
be found in Möller and Hoffmann (2004) and in section 3.3.2.

The second test compared NGPCA with NGPCA-constV by using the
sparse distribution. Here, NGPCA-constV visibly outperformed NGPCA
(figure 3.3). The results shown were typical.

L = -1.26 L = -1.22

A B

Figure 3.3: Results for the final fitted model using (A) NGPCA and (B) NGPCA-
constV.

3.3 Extension of the mixture of probabilistic PCA

As an alternative to the presented extension of Neural Gas to local PCA, a
modified version of the mixture of probabilistic PCA (Tipping and Bishop,
1999) was used. In the following, the modifications are described and moti-
vated. Then, the obtained algorithm is tested on synthetic pattern sets.

3.3.1 Algorithm

The mixture of probabilistic PCA is also composed of m local PCA units,
which have a center cj, eigenvectors w

l
j, eigenvalues λ

l
j, and a residual vari-

ance σ2
j . In the beginning, the centers are initialized with a vector quantizer.

Then, the likelihood is maximized using an expectation-maximization itera-
tion (section 2.3.1). As it is common to all Gaussian mixture models with-
out annealing, this iteration may get stuck in a local optimum. Therefore, a

44 CHAPTER 3. MIXTURE OF LOCAL PCA

proper initialization of the centers is important. However, this initialization is
not mentioned in Tipping and Bishop (1999). Thus, the first important mod-
ification is to use Neural Gas to obtain the initial position of the centers. For
Neural Gas, the standard parameter set was %(0) = 0.1m, %(tmax) = 0.0001,
ε(0) = 0.5, ε(tmax) = 0.05, and tmax = 3000m (for all of this thesis except of
section 3.3.2).

The algorithm iterates an expectation and a maximization step. In the
expectation step, the posterior probabilities are computed (section 2.3.1). In
the maximization step, the eigenvectors, the eigenvalues, and the residual
variance of the units are computed. Here, different from Tipping and Bishop
(1999), RRLSA as described in section 3.2.1 is used to compute the eigen-
vectors and eigenvalues. For all experiments in this thesis except the tests
in section 3.3.2, in total, 40 expectation and 40 maximization steps were
iterated.

During each maximization step, the algorithm goes through a fixed num-
ber of RRLSA steps (30 times the number of training patterns). For each of
these steps, a pattern is drawn from the set {xi}. Then, given the pattern xi,
a unit j is randomly chosen depending on its posterior probability P (j|xi).
For this unit the eigenvectors and eigenvalues are updated using (3.6), (3.7),
and (3.8), as before.

The learning rate αj in RRLSA is computed for each unit separately. Let
tj be the number of times the unit j was chosen. At the beginning of each
maximization step, tj restarts from zero. With increasing tj, the learning
rate decays as αj = 1/tj. This decay rule guarantees that the result for each
unit converges to an average over the presented patterns (appendix A.3).

After the eigenvectors and eigenvalues are computed, also the residual
variance σ2

j is obtained recursively. Here, the update equations are also the
same as the ones used in NGPCA, namely (3.3) and (3.4). The learning
rate αj is computed as above. The principal components were extracted
before computing σ2

j because (3.3) relies on orthonormal vectors wl
j. At the

beginning of the algorithm, the entries of W were set to random values, and
then, W was made orthonormal. The eigenvalues and the residual variance
were initially set to one.

Using an on-line algorithm like RRLSA is of advantage since for each
randomly drawn pattern, random noise can be added. If a unit has in its
neighborhood only a few patterns the variance in some directions will be
zero. Thus, the PCA yields eigenvalues with zero value. Computationally,
such eigenvalues are a problem because the corresponding probability density
has an infinite peak. With the addition of noise, however, zero variance
can be avoided. In the original algorithm suggested by Tipping and Bishop
(1999), the computation of the eigenvectors and eigenvalues is done by one

3.3. EXTENSION OF THE MIXTURE OF PROBABILISTIC PCA 45

step in batch mode. Here, the variance of single points cannot be increased
by adding noise. For all experiments, the added noise for each dimension was
in the interval [−0.005; 0.005].

The last modification is a correction for ‘empty’ units, these are units
with a prior P (j) < 1/n. Such empty units can either result from the Neu-
ral Gas initialization (Daszykowski et al., 2002), or they can occur during
the expectation-maximization iteration. In the correction, the center of the
empty unit is moved near to the center of the unit with the largest prior
(within a random deviation from the interval [-0.01;0.01] in the direction of
the principal component). The eigenvectors, the eigenvalues, and the resid-
ual variance of the empty unit are set equal to the ones of the largest unit.
Then, both units re-adjust their prior and posterior probabilities to one half
the values of the former largest unit. Thus, the ellipsoids of both units over-
lap. The slight deviation of the centers will eventually lead to the separation
of the ellipsoids in further steps of the expectation-maximization iteration
(section 3.3.2). In the following, the original mixture of probabilistic PCA
will be called ‘MPPCA’, and the presented extension ‘MPPCA-ext’.

3.3.2 Simulations

The simulations show the operation of MPPCA-ext on synthetic distribu-
tions. The examples demonstrate the importance of the initialization, the
occurrence of empty units, and that the algorithm can separate overlapping
ellipses. Finally, some tests compare MPPCA-ext with NGPCA. As in sec-
tion 3.2.3 the ring-line-square sets with 850 points and with 85 points were
used. Further pattern sets are a three-dimensional spiral distribution and
a two-dimensional two-lines distribution. The spiral is composed of 1000
points, its radius is 1.2, and its length is 5.0. The points were uniformly
distributed along the spiral, which had a thickness of 0.02. The two-lines
distribution contained two slightly tilted lines (length: 5.1, thickness: 0.2),
each of them consisted of 50 points.

The number of units used was ten for all distributions but two-lines, for
which two units were used. For all tests, two principal components were
extracted. Both Neural Gas for the initialization and NGPCA used the
same parameter set as in section 3.2.3. For MPPCA-ext, the number of
expectation and maximization steps is either given or the algorithm iterates
until convergence. In all tests, the log-likelihood per pattern L was evaluated
(see section 3.2.3).

Using the ring-line-square distribution with 850 points, the first test shows
the importance of a good initialization. Here, the other modifications did
not matter. Figure 3.4 shows that the initialization of the center positions
with k-means may lead to undesired local maxima. On the other hand, the

46 CHAPTER 3. MIXTURE OF LOCAL PCA

Neural Gas initialization reliably resulted in good model fits (figure 3.5).
Over ten separate training cycles, the log-likelihood ranged between −1.663
and −1.653. Figure 3.5 further demonstrates how the ellipses move to fit the
distribution better.

L = -1.92 L = -2.09

Figure 3.4: MPPCA converged to a local maximum after starting with k-means.
Results from two random initializations of k-means are shown. For each result, the

log-likelihood per pattern L is shown. The length of each ellipse semi-axis is
√

λl
j.

t=1 t=5

t=10

L = -2.00 L = -1.84

L = -1.70 L = -1.67

t=20

Figure 3.5: Training of MPPCA-ext, shown at different EM steps t. For each
step, the log-likelihood per pattern L is shown.

The second test on the same distribution demonstrates that the ellipses
can spread meaningful over the distribution after they all overlap at the
beginning (figure 3.6)1. A PCA extracted the two eigenvectors and the cor-
responding eigenvalues of the covariance matrix of the pattern set. All ten

1Here, MPPCA behaves the same as MPPCA-ext, since the extensions do not matter.

3.3. EXTENSION OF THE MIXTURE OF PROBABILISTIC PCA 47

units started with these eigenvectors and eigenvalues; their centers were dis-
tributed around the center of the distribution, with random deviations along
the principal component. Prior and posterior probabilities were initially the
same for all units. Here, the initialization with a single PCA led to a good
model fit. However, this does not work for all distributions; therefore, Neu-
ral Gas was used instead. Neural Gas also results in a faster convergence
(compare the t values between figure 3.5 and figure 3.6).

L = -3.01 L = -2.81

L = -2.62 L = -2.35

L = -1.88 L = -1.66

t=0

t=30 t=40

t=80t=60

t=20

Figure 3.6: Training of MPPCA after initializing all ten units with a single PCA.

Using the sparse ring-line-square set (85 points), the third test shows the
occurrence of an empty unit and the consequences of the following correction.
Empty units were only observed for sparse distributions. Figure 3.7 illustrates
the removal and reappearance of an empty unit. This figure and figure 3.3
already show a comparison between MPPCA-ext, NGPCA, and NGPCA-
constV. Before the empty unit correction, the fitted models of MPPCA-ext
and NGPCA-constV resembled each other.

48 CHAPTER 3. MIXTURE OF LOCAL PCA

L = -1.04L = -1.21

A B

Figure 3.7: MPPCA-ext with empty unit correction: (A) after one EM step, the
arrow points to the unit that is going to vanish, (B) after convergence, the arrow
points to the area where the empty unit reappeared.

A

C D

B

L = 1.91

L = 1.91 L = 2.19

L = 2.19

Figure 3.8: Three-dimensional spiral distribution. (A) NGPCA ends up with a
dead ellipsoid. (B) NGPCA with ten times as many annealing steps avoids the
dead ellipsoid. (C) NGPCA-constV with the same parameters as in B produces
a long ellipsoid connecting distant parts of the spiral. (D) MPPCA-ext results in
about the same fitted model as for NGPCA in B.

The thin spiral and the two-lines distributions were used for more com-
parisons between the different algorithms. Figure 3.8.A shows that NGPCA
ends up with a dead ellipsoid on the thin spiral. However, the dead ellipsoid
can be avoided if the annealing is slower (tmax = 300 000) (figure 3.8.B). In
contrast, NGPCA-constV for slow and fast annealing produces an undesired
long ellipsoid that stretches to distant parts of the distribution (figure 3.8.C).
Like the slow NGPCA, MPPCA-ext produces a good fitted model (figure

3.4. DIGIT CLASSIFICATION 49

3.8.D). The next test shows an example on which MPPCA-ext failed. Using
the two-lines distribution, the expectation-maximization iteration ends in an
inappropriate local maximum because the Neural Gas initialization cannot
distinguish between the two lines (figure 3.9.A). In contrast, both NGPCA
variants can cope with the two-lines distribution (figure 3.9.B).

L = -2.24 L = -1.06

A B

Figure 3.9: The final fitted model is shown for (A) MPPCA-ext and (B) NGPCA.

3.4 Digit classification

The classification of hand-written digits was used as a high-dimensional test
for the new mixtures of local PCA models. The performance is comparable
to other methods from the literature. Moreover, both NGPCA and NGPCA-
constV are better then Neural Gas and PCA alone.

3.4.1 Methods

The digits were taken from the MNIST database (LeCun, 1998), which is a
subset of the NIST database produced by the U.S. National Institute of Stan-
dards and Technology (appendix D). The database contains 60 000 images
of digits for training and 10 000 for testing. The gray-scale images (scaled to
pixel values in the interval [0, 1]) are centered in a 28× 28 pixel grid.

Two training sets were generated (Möller and Hoffmann, 2004). One con-
tained the original 28× 28 images transformed into 784 dimensional vectors.
The other one was composed of subsampled images of size 8× 8 transformed
into 64 dimensional vectors. The subsampled images were obtained by re-
moving a margin of 4 pixels, such that the digits in the resulting 20 × 20
image fitted tightly into the frame. Each of the pixels of the final 8×8 image
was produced by a weighted summation over a local region, using a Gaus-
sian weight function with a half-width of 1.25 pixels (in the 20× 20 image).

50 CHAPTER 3. MIXTURE OF LOCAL PCA

This second training set used only the first 1000 images of each digit2. Each
training set was split into ten parts, one part for each digit.

Each digit was trained by one model, separately. The local PCA mix-
ture models contained ten units with ten principal components. Both NG-
PCA and NGPCA-constV used the parameter set: tmax = 30 000, %(0) = 2,
%(tmax) = 0.002, ε(0) = 0.5, ε(tmax) = 0.0002.

The results for the 28 × 28 training set were compared to a single PCA,
which extracted 40 principal components for each digit. The single PCA had
fewer parameters then the mixture model because higher numbers of princi-
pal components did not improve the classification (using more components
makes the ellipsoids thicker, thus ellipsoids from different digits probably
overlapp). Moreover, the results were compared to standard Neural Gas,
which contained 109 code-book vectors (as many as required to obtain about
the same number of free parameters as for the local PCA mixture). Neural
Gas used the same training parameters as NGPCA.

To classify a digit, the error measure (3.2) was computed for all units of
the ten fitted models, and the digit was assigned to the model that comprised
the unit with the minimal error value. In the standard Neural Gas case, the
Euclidean distance was used instead of (3.2).

3.4.2 Results

The results for the classification of the 28 × 28 digits are shown in table
3.1. The error rates for the two NGPCA variants were averaged over three
separate training cycles (the difference between best and worst was around
0.2% for both variants). Both variants are better then a model using only a
single PCA, and also better then Neural Gas with the same number of free
parameters. MPPCA-ext could not be tested on this set because the large
distances between digits lead to numerical zero probabilities (the maximum
distance in a 784-dimensional cube of side length one is 28, this is large
compared to a σ of around 0.1).

In the following, the ellipsoids of the NGPCA model are visualized (Möller
and Hoffmann, 2004). Figure 3.10 shows the centers of the ten ellipsoids for
each digit. Each center represents the local average over a subgroup of digits.
Different ways to write a digit become visible, for example, digit ‘7’ with or
without a cross-bar.

The ellipsoid axis (eigenvectors) for one digit are visualized in figure 3.11.
The eigenvectors represent variations around a center. This can be illus-
trated by adding multiples of an eigenvector to a center (figure 3.12). In the

2The number of training patterns is different in Möller and Hoffmann (2004), where
in total 60 000 patterns were used for the 8× 8 image set.

3.4. DIGIT CLASSIFICATION 51

training method error

NGPCA 2.79%
NGPCA-constV 2.77%
PCA 4.85%
Neural Gas 4.22%

Table 3.1: Classification performance on digits of size 28× 28 from a training set
composed of 60000 digits. The extension of Neural Gas to local PCA (NGPCA) is
compared to PCA and Neural Gas.

Figure 3.10: Centers of all units obtained from NGPCA.

presented example, different sizes of the digit ‘2’ are covered by the local
PCA.

Figure 3.13 shows a sample of mis-classified digits. Some of the mis-
classified digits resemble the center they were assigned to (for example, the
digit ‘9’). These digits seem to be extremes that lie close to representatives
of another class.

52 CHAPTER 3. MIXTURE OF LOCAL PCA

Figure 3.11: Center (left image) and eigenvectors (from left to right in the order
of the descending eigenvalues) of one unit of the fitted model for the digit ‘2’.
In the eigenvector diagrams, white and black indicate positive respective negative
components.

Figure 3.12: Variation of a digit by adding multiples of the principal eigenvector
w1 to the center c. The center image c is marked by a frame, the eigenvector w1 is
shown on the right side. From the center to the left, −0.5

√
λ1w1 is added to each

picture. Thus, the picture on the very left deviates by −2
√
λ1w1 from the center.

From the center image to the right, the vector 0.5
√
λ1w1 is added. The principal

eigenvalue was λ1 = 5.2.

Figure 3.13: Sample of the mis-classified digits. The first mis-classified digit of
each class is shown (top row, class ‘0’ to ‘9’ from left to right) together with the
center vector of the unit to which the pattern was assigned (bottom row).

3.5. DISCUSSION 53

The training set with digits of size 8× 8 was used for a comparison with
MPPCA-ext, and also for a comparison with local PCA mixture models from
the literature (Hinton et al., 1997; Tipping and Bishop, 1999). These models
worked on a different data set (CEDAR, which is commercial), however the
size of the images (8 × 8) and the number of training patterns (1000 per
digit) were the same. Moreover, these models had the same complexity as
our models, namely ten units with ten principal components each. Tipping
and Bishop (1999) used the discussed MPPCA model, and Hinton et al.
(1997) used a mixture model that minimized the reconstruction error (as
mentioned in section 2.3). Other mixture models that were tested on hand-
written digits have a different complexity, for example, Meinicke and Ritter
(2001) used a variable number of principal components. These models were
excluded because they are hard to compare. Table 3.2 shows the result of the
comparison. The errors from our models were averaged over three separate
training cycles (the difference between worst and best was around 0.2%).
Tipping and Bishop (1999) presented the result of the best training cycle.

training method database error

NGPCA MNIST 4.78%
NGPCA-constV MNIST 4.64%
MPPCA-ext MNIST 4.58%
Tipping and Bishop (1999) CEDAR 4.64%
Hinton et al. (1997) CEDAR 4.91%

Table 3.2: Classification performance on digits of size 8 × 8 from a training set
composed of 10000 digits. Results are compared to two other local PCA mixture
models that have the same complexity.

3.5 Discussion

Two local PCA mixture models were presented. The first model is an ex-
tension of Neural Gas to local PCA. The code-book vectors of Neural Gas
are replaced by local PCA units. Two different variants were shown. One
(NGPCA) uses the normalized Mahalanobis distance plus reconstruction er-
ror for the competition between units. The other one (NGPCA-constV) uses
a modified error measure that ignores the volume of the ellipsoid associated
with the local PCA.

The second model is an extension of the mixture of probabilistic PCA
(MPPCA-ext). It contains three modifications: first, an initialization with
Neural Gas; second, a neural network (RRLSA) to extract the local princi-

54 CHAPTER 3. MIXTURE OF LOCAL PCA

pal components, this network allows the addition of noise for each on-line
presentation of a training pattern; third, a correction for units that have no
patterns assigned to them.

Both models could successfully fit synthetic two- and three-dimensional
training data, and they could be used to classify hand-written digits. No
clear advantage of one model over the other could be observed. Both have
advantages and disadvantages relative to each other.

NGPCA and NGPCA-constV worked on data with arbitrarily many di-
mensions; MPPCA-ext failed on the 784-dimensional data because of numer-
ical instabilities. Furthermore, data distributions can be constructed (the
two-lines distribution, figure 3.9) on which MPPCA-ext ends in a local op-
timum, but both NGPCA variants find the global optimum. Different from
the Neural Gas initialization in MPPCA-ext, NGPCA considers the shape of
the ellipses during annealing, and can therefore fit them to the distribution
before the annealing cools down and gets trapped in a local optimum. How-
ever, the two-lines distribution is highly artificial, a sensorimotor distribution
likely does not comprise two parallel or almost parallel planes that are also
close to each other.

On the other hand, MPPCA-ext is less sensitive to the Neural Gas parame-
ters (tmax, ρ(0), ρ(tmax), ε(0), and ε(tmax)); for some distributions (especially
the visuomotor model discussed in chapter 6), NGPCA depends on these
parameters. For MPPCA-ext, standard parameters could be defined that
worked for all tests in this thesis. Further, MPPCA-ext is mathematically
more sound. It maximizes the likelihood of the data given an assumption
on the density; NGPCA is heuristic. We could not prove that NGPCA opti-
mizes any specific function. However, it seems to maximize the likelihood as
well.

A disadvantage of NGPCA is that it may produce dead units that do
not get updated anymore (figure 3.8.A). To avoid dead units, the variant
NGPCA-const was introduced, which worked better on sparsely distributed
data (figure 3.3). On the thin spiral distribution, however, NGPCA-constV
resulted in a thin ellipsoid that protruded out of the spiral and connected
distant parts (figure 3.8.C). This result occurred probably because here the
normalization of the ellipsoid’s volume had the opposite effect to the case of
a huge ellipsoid; for ellipsoids with a tiny volume, the NGPCA error measure
(3.2) results in a low weight α, but the NGPCA-const error measure (3.10)
is independent of the volume. Thus, for NGPCA-constV, chances are higher
that patterns are assigned to the thin ellipsoid. For all NGPCA variants,
these chances are highest in the direction of the ellipsoid’s tips. Therefore,
NGPCA-constV might attract distant patterns in these directions.

In this chapter, the advantages of just two of the three modification of MP-
PCA were visible. The good fit of the ring-line-square data and probably also

3.5. DISCUSSION 55

the slight improvement of the digit classification result from the new Neural
Gas initialization. For the tasks in this thesis, this initialization seemed to
cure most problems with local optima associated with MPPCA. Therefore,
MPPCA was preferred over those approaches that include annealing into the
EM-iteration (Meinicke and Ritter, 2001; Albrecht et al., 2000) because they
also include many training parameters. The second modification, the correc-
tion for empty units was helpful to fit sparse data distributions (figure 3.7).
The advantage of the third modification, adding noise to increase the vari-
ance of each training pattern, was not shown, but it proved to be necessary
for approximating sensorimotor distributions (chapter 6).

The new extension of Neural Gas to local PCA is clearly better on the
digit classification then Neural Gas (with the same number of free parame-
ters) and PCA alone. Despite the apparent complexity of the task, a single
linear model describes each digit quite well (resulting in 4.85% miss-classified
digits). Thus, digit-classification does not seem to be an ideal test for a lo-
cal PCA mixture model, though it is a popular test (Hinton et al., 1997;
Tipping and Bishop, 1999; Meinicke and Ritter, 2001). Moreover, no PCA
mixture model can compete with neural networks specifically designed for
hand-written-digit classification. The best of these models has an error of
0.67% (LeCun et al., 1998). The performance difference in the classification
for the different training sets with images of size 28 × 28 and 8 × 8 (2.79%
compared to 4.78% for NGPCA) results in a large part from the different
numbers of training patterns. With the same number of patterns as for the
28× 28 case, NGPCA has an error rate of 3.11% on the 8× 8 images (Möller
and Hoffmann, 2004).

The similarity of NGPCA and MPPCA provides a common bases for a
mixture of ellipsoids, upon which a pattern recall as described in the following
chapter can take place. If we ignore the priors then the resulting fitted models
can be described by the same variables: cj, Wj, Λj, and σj. In addition,
both methods provide the same error function (3.2) for each unit defined
on these variables. The minimum of this error function over all units is an
estimate for the squared distance to the distribution of training patterns.
This estimate will be the basis for the pattern recall.

56 CHAPTER 3. MIXTURE OF LOCAL PCA

Chapter 4

Abstract recurrent neural networks

A pattern-association method is described that is based on a mixture of lo-
cal PCA, which approximates a data distribution (chapter 3). We call the
pattern association together with the approximation of the data distribution
an abstract recurrent neural network. Analogue to a recall in a recurrent
neural network, input and output components can be chosen arbitrarily af-
ter training. The output is said to be associated with the input. In the new
model, the input is the offset of a constrained space whose span is the output
space. The intersection of the constrained space with the mixture of ellip-
soids gives the completed pattern. The algorithm was applied to function
approximation, image completion, and the kinematics of a redundant robot
arm in simulation. In the latter, a trained abstract recurrent neural network
could be used both for the forward and the inverse kinematics. Experiments
showed that the recall error increased with the number of input dimensions
for a given trained network. To explain this increase, a simplified stochastic
version of the mixture of local PCA is analyzed.

4.1 Motivation

First, favorable properties of recurrent neural networks (RNN) are men-
tioned, and reasons are given for using an abstract RNN that is based on
the statistics of the training data rather than a network of neurons. Second,
this section illustrates that a pattern completion might end in a local min-
imum if the completion is realized as a gradient descent in a potential field
build on top of a mixture model. Thus, a different strategy is required.

4.1.1 Why abstract recurrent neural networks?

Recurrent neural networks have two main advantages over feed-forward net-
works (Movellan and McClelland, 1993; Steinkühler and Cruse, 1998): first,
they do not fail on tasks that provide many possible solutions for a given

57

58 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

input since RNNs relaxe to one possible solution. Second, the role of input
and output neurons can be chosen after training. Thus, the same sensorimo-
tor network can, for example, be used as a forward model and as an inverse
model.

Evidently, RNNs exist in the brain (see, for example, Nakazawa et al.
(2002)). So far, however, computational RNNs that are able to learn senso-
rimotor relationships are missing. Existing models either cannot be trained
(Steinkühler and Cruse, 1998; Cruse, 2001), or cannot be used for arbitrary
functional relationships (Hopfield, 1982, 1984). Although recurrent connec-
tions are widespread in biological nervous systems, their specific functions
and the corresponding learning mechanisms are still widely unknown, and
thus do not offer a direct approach to this problem. Moreover, since we did
not see how to construct a computational recurrent network that can also
learn to approximate functions, we developed an abstract network with the
desired characteristics. This step was further motivated by potential field
models (Bachmann et al., 1987; Dembo and Zeitouni, 1988). They can store
arbitrarily many patterns, which are the minima of a potential field. In re-
call, these models descent into the minima. However, they do not generalize;
the data are just stored.

4.1.2 Potential fields and local minima

For the mixture model, to obtain a potential field, the following two possibil-
ities exist (they are not exclusive): use the negative of the probability density
function (the sum of Gaussian functions), or use the sum of inverse Maha-
lanobis distances over all units (equivalent to a sum over Coulomb potentials
(Bachmann et al., 1987)).

Given a potential field, a functional mapping from an input to an output
can be achieved by defining a constrained subspace whose offset from zero
is given by the input. Then, the completion of the input, which yields the
output in its components, can be gained by finding a point on the constraint
that has a minimal potential value. A gradient descent along the constraint
may be used to find this minimum.

However, this gradient descent may end in a local minimum (figure 4.1).
For both the negative density and the inverse-Mahalanobis potential, a po-
tential valley corresponding to an ellipsoid may extend along the tips of the
ellipsoid toward the constraint. At the intersection, this valley results in a
local minimum within the constrained space. Such a local minimum may
be far away from the distribution of training patterns and must therefore be
avoided. Thus, instead of computing a gradient descent in a potential field,
we directly compute the point on the constraint that is closest to the closest
ellipsoid.

4.2. RECALL ALGORITHM 59

gradient descent

x

y global minimum

local minimum

constraint

Figure 4.1: A constrained gradient descent (thick arrow) in a potential field
constructed on top of the ellipses is likely to end in local minimum. Ellipses are
iso-potential curves of a local field. The dotted curves illustrate a valley in the
potential field.

4.2 Recall algorithm

The goal of the recall is to complete a pattern p whose components are only
partially given (Hoffmann and Möller, 2003). The resulting pattern z shares
the components of p that are defined as input.

After learning, the data distribution is represented by a collection of hyper-
ellipsoids; each has a center cj, direction vectors wl

j (principal axes), semi-

axes lengths
√

λlj, and a residual variance σ2
j (in any direction orthogonal

to the span of the principal axes). The wl
j are the eigenvectors of a local

principal component analysis, and the λlj are the corresponding eigenvalues.
The hyper-ellipsoids are iso-potential surfaces of the normalized Mahalanobis
distance plus reconstruction error (see section 3.2.1),

Ej(z) = yTj Λ
−1
j yj +

1

σ2
j

(ξTj ξj − yTj yj) + ln detΛj + (d− q) lnσ2
j . (4.1)

The dimensionality of the pattern space is d, and q is the number of principal
components. ξj is the displacement from the center, ξj = z − cj. Its repre-

sentation in the local coordinate system of the ellipsoid is yj = WT
j ξj. The

eigenvectors wl
j are the columns of Wj. Λj is a diagonal matrix containing

the eigenvalues λlj.

An input to the network (one part of the components of p) defines the
offset of a constrained space z(η) spanning the space of all possible output

60 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

values:
z(η) = Mη + p . (4.2)

η is a collection of s free parameters (s being the dimension of the network
output). M is a d×s matrix, which is chosen such that the constrained space
is aligned with the coordinate axes.

The recall of the complete pattern happens in two steps. First, for each
unit j, determine the point ẑj that yields the smallest potential value (4.1) on
the constrained subspace. Second, choose the unit j∗ that gives the smallest
of these minimal potential values {Ej(ẑj)}. The corresponding ẑj∗ yields the
desired output values (figure 4.2).

constraint

y

output

x

Figure 4.2: Pattern recall. The ellipses are iso-potential curves of the error
measure Ej for each unit j. The input x defines the constraint’s offset from zero.
In this subspace, the unit j∗ and the point (circle) that result in the smallest error
Ej∗ are chosen. This point’s y value is the desired output.

The error Ej as a function of the free parameters η can be written as:

Ej(z(η)) = (Mη + πj)
T (WjΛ

−1
j WT

j +
1

σ2
j

{I−WjW
T
j }) (Mη + πj)

+ ln detΛj + (d− q) lnσ2
j , (4.3)

with πj = p− cj. We derive with respect to η:

∂Ej

∂η
= 2MTDjMη + 2MTDjπj (4.4)

with

Dj = WjΛ
−1
j WT

j +
1

σ2
j

(

I−WjW
T
j

)

. (4.5)

4.3. FUNCTION APPROXIMATION ON SYNTHETIC DATA 61

Setting the derivative equal to zero yields,

η̂j = Aj(p− cj) (4.6)

with
Aj = −(MTDjM)−1MTDj . (4.7)

After the input and output dimensions have been selected, Aj needs to be
computed only once for each unit.

The function E(η) is convex. Therefore, η̂j is the only minimum. Thus,
ẑj = Mη̂j + p is the point with the smallest potential on the constraint.
Next, j∗ can be chosen, and the resulting ẑj∗ concludes the algorithm. For
each input a unique output is given, and local minima as described in section
4.1.2 are avoided.

4.3 Function approximation on synthetic data

To demonstrate the working of the recall algorithm, it was tested on two syn-
thetic pattern distributions, a noisy sine wave and a noisy circle. For both
distributions, the mixture of local PCA was gained by using the algorithm
MPPCA-ext (section 3.3). However, the alternative algorithm NGPCA (sec-
tion 3.2) could have been also used; the results were similar.

The sine-wave distribution is composed of 800 points. The mixture model
contained nine ellipses with two principal components each. Figure 4.3 shows
the result of the recall if the x-coordinate was given. The recall is locally
linear and discontinuities occur between the changes from one ellipse to the
next. On a global scale, the sine-wave is correctly restored.

1 2 3 4 5 6

1

2

x

y

Figure 4.3: Input-output relations (thick lines). The input is on the x-axis. The
nine ellipses were trained on a sine-wave (data not shown).

62 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

The second test illustrates the two advantages over feed-forward networks,
like multi-layer perceptrons. The distribution consists of 1000 points ar-
ranged in a noisy circle with radius 1.0 (figure 4.4). It was approximated by
six ellipses with two eigenvectors each. Figure 4.4 shows the results of the
recall for two different directions (x→ y and y → x) using the same mixture
of local PCA. The mapping in both directions is redundant (one-to-many).
Nevertheless, the algorithm finds a valid solution that lies on the distribution
of training patterns for input values in the training domain. Here, the solu-
tion jumps between the two semicircles. In contrast, a multi-layer perceptron
would average over redundant solutions, and thus, it would learn to produce
a line going through the middle of the circle.

x

y y

x

Figure 4.4: Input-output relations (thick lines). In the left figure, the input is on
the x-axis, and in the right figure, the input is on the y-axis.

4.4 Image Completion

The abstract RNN can be used to complete partially occluded images. The
completion was first tested on small windows cut out from natural back-
grounds, and second tested on human faces. To use the recall mechanism,
the gray-scaled images need to be converted into data points (vectors). This
conversion was achieved by writing an image row by row into a vector (pixel
values scaled between 0 and 1).

4.4.1 Windows from natural scenes

The recall algorithm was applied to blind spot interpolation. A square cut
out from an image window was filled given the surrounding pixels.

4.4. IMAGE COMPLETION 63

Methods

The images were taken from the background data set1 from the ‘Computa-
tional Vision’ group at Caltech, Pasadena. The set comprises 396 images of
size 223×147 pixels showing indoor and outdoor scenes. To create the train-
ing set, 200 windows 10 × 10 pixels large were cut out at random positions
from each of these images. Thus, totally, 79 200 100-dimensional training
patterns were created. The background data set also comprises images of
size 378× 251. Three of them were used for testing.

The local PCA methods used for training, NGPCA, NGPCA-constV, and
MPPCA-ext contained ten units and extracted 50 principal components.
The NGPCA parameters were ρ(0) = 10.0, ρ(tmax) = 0.0001, ε(0) = 0.5,
ε(tmax) = 0.001, and tmax = 400 000. The mixture models were compared,
first, to a model using a single unit extracting either 50 or all 100 eigen-
vectors, but with the same recall algorithm, and, second, to a multi-layer
perceptron (MLP). The MLP had 64 input, 30 hidden, and 36 output neu-
rons. The corresponding activation functions were the identity, the sigmoid
function, and again the identity. The weights were initialized with random
values drawn uniformly from the interval [−0.1; 0.1]. 2 000 steps of resilient
propagation (Riedmiller and Braun, 1993) were used for training.

Unless otherwise noted, a center square of size 6 × 6 pixels defines the
output, and the pixels surrounding this square are the input. To illustrate
the performance of the recall, 850 such squares were cut out of two test images
(figure 4.7), and the abstract RNN completed all of them individually. It was
ensured that a two pixels wide border (used as input) remained around each
hole. The restored test images were compared to images gained by filling
each hole with a color that is the average over all border-pixel gray-values.
For quantitative performance tests, 5 000 windows were cut out at random
positions from another test image. The mean square error between a recalled
window and the corresponding original window was calculated as the average
over all output pixels and test windows.

Results

All training methods of the abstract RNN had similar errors and showed
about the same performance than an MLP (table 4.1). NGPCA was slightly
better than NGPCA-constV and the single unit (all other comparisons did
not show a significant difference).

The remaining results were gained by using NGPCA for training. On
individual image windows, the abstract RNN could complete structures like
edges and uniform surfaces, but isolated structures in the center square could

1The data are from http://www.vision.caltech.edu/html-files/archive.html.

64 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

training method SE

NGPCA 0.0036
NGPCA-constV 0.0039
MPPCA-ext 0.0037
single unit (q = 100) 0.0039
single unit (q = 50) 0.0042
MLP 0.0037

Table 4.1: Average square error per pixel (SE) for each training method. The
standard error for all mean values was around 0.0001.

not be foreseen (figure 4.5). The two test images with 850 holes could be
completed to almost the quality of the original images (figure 4.7). However,
tilted edges and the details of leaves could not be completed correctly.

The MLP can learn only one recall direction (at once). However, for the
abstract RNN, arbitrary pixels can be chosen as input (figure 4.6).

Figure 4.5: Four randomly chosen recall examples. In each pair of images, the
left one shows the original image, and the right one presents the recall result. The
square encloses the pixels marked as output.

A

6× 6

SE: 0.0036

B

6× 6

0.0036

C

6× 6

0.0073

D

6× 6

0.0050

E

8× 8

0.0046

Figure 4.6: Mean square error per pixel (SE) for different output windows. For
A, B, D, and E the standard error was about 0.0001, and 0.0002 for C.

4.4. IMAGE COMPLETION 65

Figure 4.7: In each block of four pictures, the top left shows the test image with
850 holes, the top right shows the restored image using the abstract RNN, the
bottom left shows the restored image using the average color (see text), and the
bottom right shows the absolute difference between the RNN restored image and
the original test image (white = 0, black = 1).

66 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

4.4.2 Faces

Image completion with the abstract RNN was tested on the completion of
partially occluded faces. Here, a pattern consists of the image of a whole
face.

Methods

The faces were taken from the faces database2 of the Max Planck Institute
for Biological Cybernetics, Tübingen (Blanz and Vetter, 1999). The database
contains 100 male and 100 female faces, each in seven different perspectives
(thus, in total 1400 images). The images are in color and their size is 256×256
pixels. The faces are centered in each image and the background is black.
90% of the male and female faces were used for training and the remainder
for testing (1260 training patterns and 140 test patterns).

To preprocess each image, first, a gray-scaled image was obtained by aver-
aging over all color channels. Second, a margin 45 pixels wide (mostly black)
was removed. Then, the image was subsampled to a 26 × 26 image. In the
subsampled image, each pixel corresponds to a window (6× 6 pixels) in the
image of the previous processing stage. The pixel’s gray-value was set to the
average gray-value in that window.

In training, the mixture models NGPCA and NGPCA-constV contained
ten units with ten principal components each. The models had the same
training parameters as in section 4.4.1. MPPCA-ext could not be used be-
cause the dimensionality of the patterns was too high (see section 3.5). Re-
sults were again compared to a model using a single unit. 119 principal
components were extracted, resulting in the same number of free parameters
as for the mixture model. Moreover, the results were compared to a table
look-up, herein from the training set, the image was chosen that had the
smallest Euclidean distance to an input pattern.

Results

The mixture models showed about the same performance (table 4.2). They
did better than the single unit on large concatenated output regions; the
single unit was better to interpolate between thin stripes. All variants of the
abstract RNN were better than a table look-up on the training set.

The completions obtained by the abstract RNN resembled human faces
(figure 4.8, here, NGPCA was used as example). Some of the recalled im-
ages that do not match their test image (like the images in the bottom row)
nevertheless seem to fit the boundary conditions. These cases suggest that

2The database is available at http://faces.kyb.tuebingen.mpg.de.

4.4. IMAGE COMPLETION 67

training method SE SE SE

NGPCA 0.0133 0.0056 0.0093
NGPCA-constV 0.0129 0.0056 0.0090
single unit 0.0144 0.0042 0.0110
table look-up 0.0202 0.0118 0.0158

Table 4.2: Average square error per pixel (SE) for each training method and for
three different masks (black pixels mark output dimensions). The standard error
for all mean values was around 5%.

the approximation of the distribution of faces intersects the constraint space
more than once. To exploit this one-to-many mapping, the ellipsoid (unit)
was determined that yields the second smallest potential (see section 4.2)
and the square error of the corresponding completion was computed. Using
NGPCA, for the first mask (top half occluded), in 18 cases, the second ellip-
soid provided the solution that matched better the test image (smaller square
error). Replacing the corresponding originally recalled images by these cases,
the mean square error dropped from 0.0133 to 0.0122.

SE = 0.020

SE = 0.0043 SE = 0.0036

SE = 0.0096 SE = 0.014

SE = 0.023

Figure 4.8: Recall on randomly chosen faces. Each group of three images shows
the input on the left, the output in the middle, and the complete test image for
comparison on the right. The square error per pixel (SE) between recalled image
and test image is given.

68 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

4.5 Kinematic arm model

The abstract RNN can be used to learn the kinematics of a robot arm (Hoff-
mann and Möller, 2003). Here, a pattern consists of the coordinates of the
end-effector, the joint angles of the arm, and a binary collision variable. By
completion of a pattern that only includes the end-effector coordinates and
the collision state, a set of joint angles can be obtained; this is the inverse
direction. Analogously, the forward direction maps from the joint angles to
the end-effector coordinates and the collision state. For a given end-effector
position, redundant arm postures exist. Apart from performance tests for
the inverse and forward directions, two further tests show that the abstract
RNN can cope with additional noise dimensions (see also section 3.1) and
that the performance of the abstract RNN depends on the number of input
dimensions.

4.5.1 Methods

A robot arm with six rotatory degrees of freedom was simulated. It corre-
sponds to the real robot arm in chapter 6. Figure 4.9 shows the setup of the
model. By modeling the geometry of the arm and its surrounding, it could
be determined if a collision occurred between different parts of the arm or
between the arm and the surrounding obstacles. This information was used
for the binary collision variable.

The training set was generated by randomly choosing 50 000 joint-angle
sets (each set contains six angles). Angles were chosen from a uniform interval
of ±120 degrees centered at a predefined zero position. For each joint-angle
set, the end-effector position was determined from the geometric arm model.
It was also calculated if the angle set resulted in a collision. Thus, each
training pattern is 10-dimensional and contains six joint angles, three end-
effector coordinates, and one collision variable. Only training patterns with
an end-effector position inside a workspace of 500× 500× 500mm above the
table were included in the training set. Moreover, the patterns were chosen
such that half of the set were collision trials and half no-collision trials. All
values were scaled to fit in a 10-dimensional cube with side length one.

The training parameters for NGPCA and NGPCA-const were the same as
in section 4.4.1. In most tests (apart from those that did show the dependence
onm or q), the local PCA mixture models containedm = 200 units and q = 6
principal components. Neural Gas (Martinetz et al., 1993) was used as an
alternative training method (the same training parameters as for NGPCA
were used). It was composed of 980 code-book vectors, resulting in the same
number of free parameters as used for the mixture model. By setting the
potential of the code-book vectors to the Euclidean distance, the same recall

4.5. KINEMATIC ARM MODEL 69

x

z

y

origin

Figure 4.9: Simulated robot arm. Location of the origin and axes of the end-
effector coordinate system are shown.

algorithm could be used as for the local PCA method. The abstract RNN was
further compared to a multi-layer perceptron that had one hidden layer with
200 neurons (smaller or higher numbers did not improve the performance).
In the hidden layer, a sigmoid activation function was used. The weights were
initialized with random values drawn uniformly from the interval [−0.5; 0.5].
Forward and inverse direction had to be learned separately. In both cases,
the network trained 2 000 epochs of resilient propagation (Riedmiller and
Braun, 1993).

The local dimensionality of the kinematic manifold is six (the six joint
angles are the free parameters), and this guided the choice of the parameter
q. In general, however, the local dimensionality of a data distribution is not
known a priori. To obtain the number of dimensions, the following algorithm
was used.

For every data point, the 30 closest (Euclidean distance) neighbors were
selected. Then, on each neighborhood a PCA was carried out. The resulting
eigenvalues were averaged over all data points. The size of successive averaged
eigenvalues λq is expected to decrease slowly until the local dimensionality
is reached, and then, this size breaks down and reaches a noise level. Thus,
the local dimensionality can be obtained as the position of the first peak in
the series λq+1/λq (Philipona et al., 2003).

The trained abstract RNN could recall in both inverse and forward direc-
tions. For the inverse direction, the end-effector coordinates and the collision

70 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

state are the offset of a constrained space, and the recall algorithm had to
find the joint angles. Position errors were calculated between the desired
end-effector coordinates and the ones obtained by feeding the recalled joint
angles into the geometric arm model. Collision errors were obtained in a
similar way. Desired end-effector coordinates were taken from a 11× 11× 11
grid inside the working space.

In the forward direction, the six joint angles were given, and the network
had to find the end-effector coordinates and the collision state. The position
error and collision-prediction error were computed by directly comparing the
network output with the result from the geometrical model. The test pattern
set used here was randomly generated in the same way as the training set.
It contained 1331 patterns (the same number as for the inverse direction).

Two further tests show how the abstract RNN copes with additional noise
dimensions and how the recall results depend on the dimensionality of the
input. For the first of these tests, another training set was generated with
three additional noise dimensions. In this set, each training pattern had three
additional variables, whose values were randomly drawn from the interval
[−1.0; 1.0].

To investigate the effect of the number of input dimensions on the perfor-
mance, errors were computed for arbitrary recall directions. In a test with
arbitrary directions that include one-to-many mappings, as in the case of the
inverse direction, a recalled pattern cannot be directly compared with a test
pattern. Moreover, no function exists that could map the output back onto
the input (to compute the error as above). As a solution, the square error
was computed as the minimal squared distance to the manifold given by the
geometric arm model. This optimization (in the subspace of joint-angles) was
carried out with the ‘Downhill Simplex Method’ (Press et al., 1993, p. 408).
The square error was computed on all test patterns for each possible number
of input dimensions, while for each test pattern, the single input dimensions
were chosen at random. This random choice avoids geometric effects that
might favor specific directions.

4.5.2 Results

The abstract RNN could cope with the redundant arm postures for a given
end-effector position; the MLP could not (table 4.3). The local PCA mixture
approximated the training data also better then Neural Gas (table 4.3). The
results from the different mixture models NGPCA, NGPCA-constV, and
MPPCA-ext were almost equal (table 4.3). Compared to NGPCA, NGPCA-
constV was slightly worse on the inverse direction. Over five different training
cycles (retraining of the mixture of local PCA), the average position errors
varied only slightly (for NGPCA, the maximum deviation was 2 mm).

4.5. KINEMATIC ARM MODEL 71

method direction input position error (mm) collision error (%)

NGPCA inverse no collision 27 ± 15 5
NGPCA inverse collision 23 ± 13 8
NGPCA forward - 44 ± 27 11
NGPCA-constV inverse no collision 31 ± 17 5
NGPCA-constV inverse collision 28 ± 14 11
NGPCA-constV forward - 43 ± 29 11
MPPCA-ext inverse no collision 29 ± 15 5
MPPCA-ext inverse collision 25 ± 14 6
MPPCA-ext forward - 45 ± 29 14
Neural Gas inverse no collision 58 ± 26 2
Neural Gas inverse collision 56 ± 27 4
Neural Gas forward - 160 ± 74 18
MLP inverse no collision 310 ± 111 30
MLP forward - 93 ± 48 13

Table 4.3: Position and collision errors for an abstract RNN using NGPCA,
NGPCA-constV, and MPPCA-ext for training, compared to a variant using Neural
Gas for training and to a multilayer perceptron (MLP). Results are shown for two
different directions of recall: forward and inverse. The inverse model takes the
desired collision state as an additional input variable (third column). Position
errors are averaged over all test patterns, and are given with standard deviations.
In the inverse case, the collision error is the percentage of trials deviating from the
collision input value. In the forward case, it is the erroneous number of collision
state predictions.

The mixture models distribute the training patterns among the units of
the mixture. For NGPCA and NGPCA-constV, every pattern is assigned to
one unit (at the end of the training). The number of patterns assigned to a
unit is a measure for the weight of the unit; for MPPCA-ext, the weights are
the prior probabilities. These weights had roughly a bell-shaped distribution
among the units (figure 4.10). Different from MPPCA-ext, the distributions
for NGPCA and NGPCA-constV showed a second peak for units having few
assigned patterns (around 50, the average is 250). A single peak seems to
be favorable. However, the distribution of assigned patterns also depends on
the structure of the data set (which is largely unknown). Apparently, in this
experiment, the effect on the performance was negligible (table 4.3).

The remaining tests were carried out only with NGPCA. The distribution
of the individual errors shows regions corresponding to different ellipsoids
selected during the recall (figure 4.11). At the transition between two regions,
the error as a function of the input is discontinuous.

72 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

0

10

20

30

40

50

60

0 100 200 300 400 500

NGPCA
NGPCA-constV

0

10

20

30

40

50

60

0 0.002 0.004 0.006 0.008 0.01 0.012

MPPCA-ext

n

number of assigned patterns prior probability

n

Figure 4.10: Histogram of assigned patterns, respective prior probabilities. n is
the number of units for each interval.

-300

-200

-100

 0

 100

 200

 300

 200 300 400 500 600 700

[mm]

z

x [mm]

-600

-500

-400

-300

-200

-100

 0

 200 300 400 500 600 700

[mm]

y

x [mm]

Figure 4.11: Position errors of the inverse model with input ‘collision’. (Left)
Horizontal plane (approximately 70mm above the table). (Right) Vertical plane
through the origin (z = 0).

The performance depends on the number of units m and principal com-
ponents q. The position and the collision errors decreased with increasing
m (table 4.4). Furthermore, the position error was smallest at q = 6 (figure
4.12, right). This q value matches the local dimensionality of the distribution
(figure 4.12, left).

The abstract RNN could also cope with additional noise dimensions if the
number of principal components was adjusted accordingly (table 4.5). With
three noise dimensions and q = 6 principal components, the position errors
of the abstract RNN were more than double . However, with q = 9, the
position errors were again at the no-noise level.

4.5. KINEMATIC ARM MODEL 73

direction input error m = 50 m = 100 m = 200

inverse no collision position (mm) 48 38 27
inverse no collision collision (%) 5 5 5
inverse collision position (mm) 47 35 23
inverse collision collision (%) 8 9 8
forward - position (mm) 74 56 44
forward - collision (%) 16 14 11

Table 4.4: Dependence on the number m of units.

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

λ
λ

q
q

dimension q

+1

25

30

35

40

45

50

55

60

3 4 5 6 7 8 9

q

E
[mm]

Figure 4.12: (Left) Ratio of successive averaged eigenvalues λq and λq+1 (see
methods). (Right) Dependence of the position error E (here for the direction:
inverse, no collision) on the number of principal components q.

direction input error q = 6 (no noise) q = 6 q = 9

inverse no collision position (mm) 27 57 30
inverse no collision collision (%) 5 6 6
inverse collision position (mm) 23 64 24
inverse collision collision (%) 8 6 11
forward - position (mm) 44 101 45
forward - collision (%) 11 15 13

Table 4.5: Compensation of noise. The first column of numbers shows the result
without noise dimensions (as in table 4.3), the second with three noise dimen-
sions and six principal components, and the third with noise and nine principal
components.

74 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

The errors for the forward direction were consistently higher than for the
inverse direction (table 4.3 and 4.4). The major difference seems to be that
the forward direction has six input dimensions; the inverse direction has only
four. This is consistent with the finding that the square error per output
dimension increased with the number of input dimensions (figure 4.13). For
intermediate numbers r, the increase was even exponential. In the following
section, this finding is investigated theoretically.

0.0001

0.001

0.01

0.1

1 2 3 4 5 6 7 8 9

r

<
E

>
/(

10
-r

)

Figure 4.13: Mean square error (SE) as a function of the number r of input
dimensions. The dashed line is the function a exp(br) fitted to point 2 to 8; b was
0.59± 0.03.

4.6 Dependence on the number of input dimensions

As shown in section 4.5, the performance of the abstract recurrent neural
network depends on the number of input dimensions chosen. A higher num-
ber of input dimensions results in a higher sum of square errors per pattern.
This relationship is investigated theoretically on a simplified abstract RNN.

The first simplification is that the model consists of spheres instead of
ellipsoids. Thus, the distribution of training data is approximated by a set of
m code-book vectors cj, and for each of them the potential field is given by the
Euclidean distance. The second simplification is that the code-book vectors
are uniformly randomly distributed. This is justified for distributions that
are wrapped inside the pattern space, and are not restricted to embedded

4.6. DEPENDENCE ON THE NUMBER OF INPUT DIMENSIONS 75

hyper-planes, as it is likely the case for the kinematic arm model. Recall
works as in section 4.2 (see also figure 4.14).

x

x

x1

3

.
.

..

2

Figure 4.14: The trained abstract network consists of a set of code-book vectors,
here illustrated as circles. These vectors are distributed randomly. Recall happens
by finding the closest vector to a constraint space (gray line). The offset of this
line from the origin is the input.

We assume that the code-book vectors lie inside a d-dimensional cube
of side length two, centered at the origin. Since the code-book vectors are
distributed uniformly, the average error is independent of the specific value of
the input (offset of the constrained space)3. Thus, we arrange the constrained
spaces such that they all go through the origin. If d − 1 input dimensions
are given, the constraint is the xd-axis. For d − 2 input dimensions the
axis xd and xd−1 span the constraint space, and so on (see figure 4.15 as an
example). Instead of choosing different input values to compute the sum of
square errors, we draw a new set of cj from a random distribution for each
test trial.

Given r input dimensions, the squared distance E j of cj to the constrained
space is

Ej =

r
∑

i=1

(

c ji

)2

. (4.8)

We define the square error E as the minimum squared distance to the data
approximation (in the kinematic arm model, this matches the computation of
the square error in the case of arbitrary directions, see section 4.5.1). Thus,

3Boundary effects are ignored. For large m, they probably have only a minor effect.

76 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

1

1

1

x

d

.

..

x

x2

1

3

Figure 4.15: Example using r = 1 input dimensions in a n = 3 dimensional
space. The x2x3 plane is the constrained space. Code-book vectors are illustrated
as circles. Possible code-book locations are enclosed by the cube drawn with dotted
lines. The dashed lines show the distances between constraint and code-book
vectors.

E = min

{

r
∑

i=1

(c1i)
2,

r
∑

i=1

(c2i)
2, . . . ,

r
∑

i=1

(cmi)
2

}

. (4.9)

The sum of square errors per pattern is the expectation value of E given a
random distribution of cj. To compute the expectation of a minimum, we
use the following trick (Wentzell, 2003). The cumulative probability Pc(T)
that all Ej are larger than a threshold T is computed. Pc(T) is monotone
descending, starting with Pc(0) = 1. The negative derivative of Pc(T) can
be interpreted as the probability density function of T . For a given T , this
function provides the probability density that T equals the smallest member
of the set {Ej}. Thus, the expectation value of T (the first momentum of the
probability density function) equals the expectation value of E, the minimum
of {Ej}. Therefore,

〈E〉 = 〈T 〉 = −
∫

dPc(T)

dT
T dT . (4.10)

The probability p that a point cj has a squared distance Ej larger or equal to
T is the cube volume outside the r-sphere4 with radius

√
T centered at the

4An r-sphere is a hyper-sphere embedded in an r-dimensional space.

4.6. DEPENDENCE ON THE NUMBER OF INPUT DIMENSIONS 77

origin divided by the cube volume (figure 4.16). The cumulative probability
Pc is p to the power of m.

A B

Figure 4.16: The gray area relative to the total area of the square is the prob-
ability that a point lies outside the circle. Two examples with different radii are
shown.

To make the function p over T analytically integrable, we make an ap-
proximation. The r-cube, the space of all possible codebook vectors (in the
first r dimensions), is replaced by an r-sphere with radius

√
r centered at

the origin. This sphere encloses tightly the r-cube. To compensate this step,
we multiply the number of codebook vectors m with the r-sphere volume
divided by the r-cube volume. The volume of an r-sphere with unit radius
can be written as

Vr =
π

r
2

Γ(r2 + 1)
. (4.11)

Γ is the Gamma-function. It is related to the factorial by Γ(n) = (n− 1)! for
positive integers n. For r = 2, for example, the above volume Vr equals π.
Hence, the resulting volume relation vr (here, for the sphere radius

√
r) is

vr =
π

r
2r

r
2

Γ(r2 + 1)2r
. (4.12)

The above step is justified by the uniform distribution of the cj. But, it is
not an equivalence transformation (for r > 1). The quality of this approxi-
mation will be tested later. The resulting number of vectors, µ = int(vrm),
is rounded to an integer value. With the approximation, the probability p(T)
that a vector has a squared distance Ej ≥ T can be expressed as

p(T) = 1−
√
T r

√
r r

. (4.13)

78 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

The total probability Pc that all vectors fulfill the above condition is

Pc(T) =

µ
∏

j=1

p(T) = (1− (
T

r
)

r
2)µ . (4.14)

The value of T extends from 0 to r. Using (4.10), we obtain for the expecta-
tion value of E

〈E〉 = −
∫ r

0

dPc(T)

dT
T dT =

∫ r

0

Pc(T)dT − Pc(T)T
∣

∣

∣

r

0
=

∫ r

0

Pc(T)dT .

(4.15)
The second equality sign uses integration by parts, the last equality sign uses
(4.14). The final integration, using (4.14), gives

〈E〉 = r
Γ(r+2

r)Γ(µ+ 1)

Γ(2+r+µr
r)

. (4.16)

The integral was solved with the help of MATLAB
�

and its symbolic toolbox.
Using the equality Γ(x) = (x− 1)Γ(x− 1), the expression can be simplified
to

〈E〉 = r

µ
∏

j=1

j

j + 2/r
. (4.17)

For large µ, the latter is more feasible for numerical evaluation than (4.16).
We further investigate the quality of our approximation. The case m = 1
can be evaluated correctly. For one codebook vector, the expectation of its
squared distance can be directly calculated:

〈E〉 = 2−r
∫ 1

−1

∫ 1

−1

· · ·
∫ 1

−1

r
∑

i=1

c2i

r
∏

i=1

dci = 2−rr
2r

3
=

r

3
. (4.18)

Figure 4.17 shows the result of this comparison. The mismatch increases
with the number of input dimensions r.

We want to check our approximation using larger m. The result from
(4.12) and (4.17) was compared to a simulation, in which cj were drawn
randomly from a r-cube with side length 2. Figure 4.18 shows the result,
using r = 10 input dimensions and 100 000 trials for each m value in the
simulation. The approximation got better the more codebook vectors were
used. The number of codebook vectors needed for a good approximation
depends on the value of r. The higher r, the more vectors are needed.

4.6. DEPENDENCE ON THE NUMBER OF INPUT DIMENSIONS 79

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20

correct
approximation

<
E

>

r

Figure 4.17: Comparison between the approximation, replacing the r-cube by a
r-sphere resulting in (4.12) and (4.17), and the correctly evaluated result (4.18) for
one code-book vector.

1.5

2

2.5

3

5 10 15 20 25 30

simulation
theory

<
E

>

m

Figure 4.18: Comparison between the theory, using (4.12) and (4.17), and the
result from a simulation, with r = 10. The number of code-book vectors is m.

80 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

Finally, the dependency on the number of input dimensions is demon-
strated for the case m = 200. As above, the theory is compared to a simula-
tion, using 100 000 trials for each r value. In this test, theory and simulation
results did overlap (figure 4.19). Between r = 5 and r = 8 the increase is
approximately exponential with exponent 0.69.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9

simulation
theory

<
E

>
/(

10
-r

)

r

Figure 4.19: Dependency of the mean square error per output dimension on the
number of input dimensions r for m = 200 (d = 10). Theory, using (4.12) and
(4.17), and simulation results are shown.

4.7 Discussion

A pattern association model, called abstract recurrent neural network, was
introduced that works analogue to an RNN. Like feed-forward networks, the
model can be trained on any data distribution. It has, however, two ad-
vantages over feed-forward networks. First, a trained abstract RNN can
associate patterns in any mapping direction. Second, the model can cope
with one-to-many mappings.

The recall algorithm works on top of a mixture of local PCA (geometri-
cally a mixture of ellipsoids) that approximates the data distribution. Differ-
ent from a gradient descent relaxation, the algorithm avoids local minimum
since an analytical solution exists that maps an input pattern directly onto
its completion. The algorithm is further independent of the method that

4.7. DISCUSSION 81

produced the mixture model, and in all examples from this chapter, also the
recall results were similar for different local PCA methods.

The mapping obtained by the abstract RNN is locally linear. At the tran-
sition between two ellipsoids the mapping is discontinuous (figure 4.3 and
4.11). Avoiding these discontinuities might improve the algorithm. One pos-
sibility may be to interpolate between neighboring ellipsoids. Here, however,
the difficulty is to find a neighbor that can continue the solution instead
of providing an alternative solution (interpolating between alternative solu-
tions leads to errors). Figure 4.20 shows a possible problem. The neighbor
ellipse with the alternative solution can have the smallest Euclidean and
Mahalanobis distance to the current ellipse.

y

x

constraint

B

A

Figure 4.20: An interpolation algorithm needs to find a neighboring ellipse for the
current relaxation result (circle). In this example, however, ellipse A (representing
an alternative solution) is closer to the current ellipse than ellipse B, which would
be favorable.

Tavan et al. (1990) suggested another recall algorithm based on a den-
sity model of the training patterns. Here, the density is a mixture of uni-
form Gaussian functions. Recall happens in a recurrent radial basis function
network. Its activation functions are the Gaussians from the local densi-
ties. Thus, the current state is a weighted sum of the Gaussian centers.
To avoid local minima, the algorithm anneals (shrinks) the width of the
Gaussians parallel to the recurrent state update. For the constrained re-
call, however, a straight-forward extension of this algorithm to ellipsoids
did not have a comparable performance as the abstract RNN (figure 4.21).
The extension consists of three parts: the uniform Gaussians are replaced by
multi-variate ones (2.16); the updated state is projected onto the constrained
space, and the annealing is realized by coupling all eigenvalues to a global
σ value (λ′ = λ + µ(σ − λ) with the coupling µ; σ is kept constant, while µ

82 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

slowly decreases during the annealing). The completion did not follow the
shape of the tilted ellipses because the weighted sum of centers came out to
be the center of only one ellipse; if a state is close enough to one ellipse, the
activation of the other ellipses can be neglected.

1 2 3 4 5 6

1

2

Figure 4.21: Pattern completion based on the recurrent radial basis function
network suggested by Tavan et al. (1990). The recall cannot follow the shape of
the ellipses (compare with figure 4.3). The thick curves and dots show the input-
output relation. The input is on the x-axis.

The abstract RNN could be successfully applied to the completion of im-
ages (section 4.4). In comparison, a discrete or continuous Hopfield network
(Hopfield, 1982, 1984) cannot be used to recall gray-scaled images. On the
face completion task, the abstract RNN was even better then a table look-up
on the whole training set.

On the completion of small windows, the mixture of local PCA resulted
in about the same recall error as a single unit. With both single and mixture
model, the recalled images seem to capture only the low-pass filtered image
part. They are averages over all windows that match the input pixels. More-
over, the midpoints of the mixture model came out to be just monotone gray
tones. Apparently, the distribution of images just extends from the origin
into different subspaces. Thus, the advantage of having different unit centers
is lost.

On the faces, the mixture model was better than a single unit if large
connected areas needed to be filled. Here, multiple solutions can exists for
a given input, and the mixture model could cover the different solutions.
However, if only thin stripes needed to be filled, the solution is not ambiguous,
and here, the single unit was better.

The abstract RNN could learn the kinematics of a robot arm (section 4.5).
The inverse direction had redundant degrees of freedom. Nevertheless, the

4.7. DISCUSSION 83

model could recall a posture that brought the end-effector to a given position;
a multi-layer perceptron could not. All mixture of local PCA variants did
almost equally well. In this experiment, NGPCA did not produce dead units
(units with no patterns assigned to); the smallest number of patterns for one
unit was around 50 (figure 4.10). This possibly explains why NGPCA-constV
did not bring an improvement (see section 3.2.2). The slight decrease in
performance for NGPCA-constV might result from ellipsoids that erroneously
connect distant parts of the distribution, as observed in figure 3.8.C. These
ellipsoids have only a few assigned patterns, and this might explain, why
NGPCA-constV results in a lower minimal number of assigned patterns per
unit (figure 4.10).

The following rules can be given for the number of units m and principal
components q. Increasing m increased the performance because the training
patterns lie on a manifold that is non-linear. A stable training, however,
limits the maximum number of units (this depends on the number of training
patterns). The optimal number of principal components was equal to the
local dimensionality of the distribution. For arbitrary distributions, the local
dimensionality can be obtained by computing a PCA on a local neighborhood
within the distribution (section 4.5.1 and figure 4.12, left).

For an optimal performance, it was expected that the local dimensionality
sets the minimum value for q because fewer principal components cannot
describe the local extend of the distribution. However, it was not expected
that further increasing q decreased the performance. An explanation might
be that the eigenvalues in the direction orthogonal to the kinematic manifold
were unequal (figure 4.12, left). Thus, for q > 6 the error measure (4.1)
is not isotropic for directions orthogonal to the manifold (as it should be
ideally), and this may disturb the competition between the units in the recall
algorithm.

The abstract RNN could cope with additional noise dimensions. If they
are added, the pattern distribution also extends to these dimensions. Thus,
the local dimensionality increases by the number of added noise dimensions,
and q needs to be adjusted accordingly to get the same performance.

The mean error of the recall increased with the number r of input di-
mensions given a constant m. This increase was observed in the experiment
with the kinematic arm model and in a simplified stochastic version of the
abstract RNN. Both tests could produce an exponential increase for inter-
mediate values of r (figure 4.13 and 4.19). Moreover, the exponent was of
the same order (0.59 in experiment compared to 0.69 in theory), despite the
rough simplifications made in the theory. Thus, the increase in error with
increasing r is possibly a characteristic of the recall algorithm. Therefore, in
applications, mappings from many dimensions to only a few (for example,
ten to two) should be avoided.

84 CHAPTER 4. ABSTRACT RECURRENT NEURAL NETWORKS

In chapter 6 the abstract RNN is applied to a real robot arm. There, the
robot’s task is to grasp an object, and the RNN associates an arm posture
with an image of the object.

Chapter 5

Kernel PCA for pattern association

This chapter presents an alternative to the pattern association based on a
mixture of local PCA. This mixture is replaced by a single PCA in an infinite-
dimensional feature space, into which the data are (virtually) mapped. The
principal components in this feature space can be extracted using kernel PCA,
which operates only on the data points within the original space (section 2.4).
In the original space, a potential field is constructed based on these principal
components. To associate an output with an input, a point, whose input
portion is given, relaxes along a constraint subspace, whose offset from zero
is the input. Herein, relaxation is a gradient descent in the potential field.
Potential fields were computed for two-dimensional synthetic data, and the
pattern-association method was applied to a synthetic distribution and to the
kinematic arm model from section 4.5. On the pattern association, kernel
PCA is compared to the mixture of local PCA.

5.1 Motivation

Potential fields are used for pattern association. As for chapter 4, this was
motivated by the work of Bachmann et al. (1987) and Dembo and Zeitouni
(1988); however, the region of attraction is neither the set of data points
nor a set of code-book vectors. Instead, this region is a subspace spanned
by principal components (figure 5.1). The problem is that, usually, data
are not distributed linearly. A subspace in the original data space would
therefore be no good approximation of the data distribution. However, if the
data are transformed into a higher-dimensional feature space, the chance is
higher that in this space, the image of the data can be separated linearly
from the image of its complement (Cover, 1965). Figure 5.2 illustrates this
mapping. Thus, we compute the principal subspace in the feature space1.

1An alternative might by principal curves and surfaces (Hastie and Stuetzle, 1989).
However, kernel PCA has been shown to outperform them (Mika et al., 1999).

85

86 CHAPTER 5. KERNEL PCA FOR PATTERN ASSOCIATION

In the original space, the potential of a point is given by the square dis-
tance of the point’s image to this subspace. Images having the same distance
lie on a hyper-cylinder (here, defined as the set of points having equal dis-
tance to a subspace, for example, in three dimensions and with two principal
components, the hyper-cylinder degenerates to two parallel planes). The
hyper-cylinder is the iso-potential boundary of a corresponding cylindrical
potential field.

y

x

Figure 5.1: The potential increases quadratically when moving in directions or-
thogonal to the principal subspace (solid line). The dashed lines are iso-potential
lines. Gray points are the data distribution.

Φ

*
*

*
* *

*
*

* *
* * *

x
x y

y z

Figure 5.2: Data (◦) are mapped into a higher-dimensional space where they can
be linearly separated from points (∗) originating from outside the data distribution.
The plane shown is spanned by two principal components.

5.2. PATTERN ASSOCIATION ALGORITHM 87

5.2 Pattern association algorithm

The training data are xi ∈ IRd with i = 1, . . . , n. In training, the kernel
matrix K̃, its eigenvectors al (section 2.4), and (if used) the reduced set
{yi, βli} (appendix B.2) are computed. From these values, the potential E

of a point z ∈ IRd can be obtained. In recall, a pattern is completed by a
gradient descent in the potential field E(z).

5.2.1 Spherical potential

First, we consider a spherical potential field in feature space. Here, it is not
necessary to compute the principal components. All we need is the mean of
the data in the feature space,

ϕ̄ =
1

n

n
∑

i=1

ϕ(xi) . (5.1)

The potential of a point z in the original space is the squared distance from
its mapping ϕ(z) to the center ϕ̄,

ES(z) = ||ϕ(z)− ϕ̄||2 = ϕ(z)Tϕ(z)− 2ϕ(z)T ϕ̄+ ϕ̄T ϕ̄ . (5.2)

Using (5.1), the scalar products can be replaced by the kernel function k (see
section 2.4),

ES(z) = k(z, z)− 2

n

n
∑

i=1

k(z,xi) +
1

n2

n
∑

i,j=1

k(xi,xj) . (5.3)

All parts of this equation are known. The last term is constant, and can
therefore be omitted. For radial basis functions (section 2.4.3), the first term
is also constant, and the potential can be simplified to:

ES(z) = −
2

n

n
∑

i=1

k(z,xi) . (5.4)

This function is proportional to the Parzen window density estimator (Parzen,
1962).

5.2.2 Cylindrical potential

We use the reconstruction error (Diamantaras and Kung, 1996, p. 45) as a
potential field in feature space,

88 CHAPTER 5. KERNEL PCA FOR PATTERN ASSOCIATION

E(ϕ̃) = ϕ̃T ϕ̃− ϕ̃TWTWϕ̃ . (5.5)

ϕ̃ is a vector originating in the center of the distribution in feature space,
ϕ̃(z) = ϕ(z) − ϕ̄. The matrix W contains the q row vectors w̃l (q is the
number of principal components)2.

We need to eliminate ϕ̃ in (5.5), and write the potential as a function of a
vector z taken from the original space. The projection fl(z) of ϕ̃(z) onto the
eigenvectors w̃l =

∑n
i=1 α

l
iϕ̃(xi) can be readily evaluated using the kernel

function k,

fl(z) = ϕ̃(z)T w̃l

=

[

ϕ(z)− 1

n

n
∑

r=1

ϕ(xr)

]T [n
∑

i=1

αliϕ(xi)−
1

n

n
∑

i,r=1

αliϕ(xr)

]

=

n
∑

i=1

αli

[

k(z,xi)−
1

n

n
∑

r=1

k(xi,xr)−
1

n

n
∑

r=1

k(z,xr)

+
1

n2

n
∑

r,s=1

k(xr,xs)

]

. (5.6)

The second equality uses (5.1). As a result, E(z) can be expressed as

E(z) = ϕ̃T ϕ̃−
q
∑

l=1

fl(z)
2 . (5.7)

The scalar product ϕ̃T ϕ̃ equals the potential field of a sphere (5.3). Thus,
the expression of the potential E(z) can be further simplified to

E(z) = ES(z)−
q
∑

l=1

fl(z)
2 , (5.8)

which is the desired form of the cylindrical potential.
The above computation of fl(z) requires n evaluations of the kernel func-

tion for each z. Since, for each component l, the same kernel can be used,
the total number of kernel evaluations is also n. With the speed-up de-
scribed in appendix B.2, this number can be reduced to m. Here, the ex-
pression

∑n
i=1 α

l
iϕ(xi) is estimated by

∑m
i=1 β

l
iϕ(yi), and 1/n

∑n
i=1ϕ(xi) by

∑m
i=1 β

0
iϕ(yi). Doing these replacements, the equation for fl(z) (5.6) can be

approximated by

2The tilde indicates an eigenvector that belongs to the centered data (section 2.4.2).

5.2. PATTERN ASSOCIATION ALGORITHM 89

fl(z) =

m
∑

i=1

(

βli − β0
i

n
∑

j=1

αlj

)

k(z,yi)

−
m
∑

i=1

m
∑

j=1

β0
i β

l
jk(yi,yj) +

n
∑

r=1

αlr

m
∑

i=1

m
∑

j=1

βliβ
l
jk(yi,yj) . (5.9)

The last two terms and
∑n

j=1 α
l
j do not need to be evaluated for each z, but

can be computed beforehand. Therefore, the computation is dominated by
the m evaluations of the kernel function, which need to be carried out only
once for all eigenvectors l.

Examples

We study two extreme cases as examples for potential fields. Let σ2
d be

the maximal variance of the distribution, and σf be the size of the small-
est structure of interest within the distribution. We use a Gaussian kernel,
k(z,xi) = exp(−||z− xi||2/(2σ2)).

First case, σ ¿ σf : the kernel function k(z,xi) is almost everywhere ap-
proximately zero, apart from z ≈ xi . Therefore, the spherical potential (5.3)
is almost everywhere one, and the projections on the principal components
(5.6) are almost everywhere zero. Thus, the potential according to (5.8) is
almost everywhere one.

Second case, σ À σd: the kernel function k(z,xi) is approximately one.
If this value is put into (5.3), (5.6), and (5.8) the resulting potential value is
zero (for all points).

Both cases do not give desirable potential fields. Therefore, the value of
σ should be chosen from the interval [σf , σd].

5.2.3 Recall

In recall, the components of a pattern p are partially given, and the compo-
nents of a completed pattern z are divided into input and output (see section
4.2). The input is the offset p of a hyper-plane extending into the output
dimensions:

z = Mη + p , (5.10)

where η are the free parameters of the hyper-plane. The matrix M defines
which dimensions are input and which are output. To obtain the output for
a given input, the free parameters are chosen such that the potential E(z) is
minimized,

90 CHAPTER 5. KERNEL PCA FOR PATTERN ASSOCIATION

η∗ = argmin
η

E(z(η)) ,

zopt = Mη∗ + p . (5.11)

There seems to be no analytical solution for η∗. In feature space, the con-
straint space is not a hyper-plane. However, the minimization can be solved
using standard numerical optimization algorithms.

5.3 Experiments

The new pattern-association algorithm is tested on two-dimensional synthetic
distributions and on the ten-dimensional kinematic arm model.

5.3.1 Methods

For the tests three synthetic distributions were used, ring-line-square, vortex,
and sine-wave, and further data from the kinematic arm model (section 4.5).
The ring-line-square distribution is composed of 850 points in a plane. The
vortex distribution is also two-dimensional and consists of 700 points. In both
sets the points are uniformly distributed in a defined region. The sine-wave
is composed of 800 points and is surrounded by 50 outliers (noise). For the
kinematic arm model, different from section 4.5, only 5 000 training patterns
were generated. Computational limits did not allow a much larger training
set (K is a n× n matrix).

Kernel PCA was done on all data points of each distribution. A Gaussian
kernel with width σ was used. The Gaussian kernel corresponds to a mapping
into a countable-infinite-dimensional space (section 2.4.3). Thus, according
to Cover’s theorem (Cover, 1965), the probability to separate linearly (in
feature space) the data distribution from its complement is one. This is
favorable. The also commonly used ‘polynomial’ kernel functions do not
have this property (Schölkopf and Smola, 2002). A test with another radial
basis function kernel (‘inverse multi-quadratic’, see section 2.4.3), which also
fulfills the above property, showed results similar to those gained from the
Gaussian kernel. Therefore, the presentation is restricted to the Gaussian
function.

The width σ was set to 0.3 for the ring-line-square, the vortex, and the
sine-wave distribution (unless otherwise stated) and to 1.5 for the kinematic

arm data. The eigenvectors of K̃ were extracted using the Power Method
with deflation (appendix B.1).

With the speed-up, the potential is computed from a reduced set of m
points {yi} instead of the n data points {xi} (appendix B.2). To calculate

5.3. EXPERIMENTS 91

the reduced set, we need to maximize over {yi}. Schölkopf et al. (1998a)
computed {yi} by iteration. In the present study, however, this was not
stable. Sometimes, the iteration ended in an oscillation. Thus, instead, the
conjugate gradient method from the Numerical Recipes’ code (Press et al.,
1993) was used. The values of yi were initialized randomly within the maxi-
mum range of the training data. For all tests, the size m of the reduced set
was set to n/10.

A quality measure was used to give a quantitative statement on how good
a potential field describes the data distribution (appendix B.3). Since we are
using uniform distributions, we can define a region that encloses the same
volume as the distribution, within an iso-potential curve. The quality is given
in percent of the data points covered by that region.

Recall works by solving an optimization problem (see section 5.2.3). The
same conjugate gradient method was used to find the parameters η∗. The
components of η were initially set to zero.

The recall results were compared to the mixture of PCA (chapter 3 and
4). For training, NGPCA was used. Its parameters were, first, for the sine-
wave with noise: m = 10 units, q = 2 eigenvectors, tmax = 30 000, ρ(0) =
1.0, ρ(tmax) = 0.001, ε(0) = 0.5, and ε(tmax) = 0.05, and second, for the
kinematic arm data: m = 100 units, q = 6 eigenvectors, tmax = 400 000,
ρ(0) = 10.0, ρ(tmax) = 0.0001, ε(0) = 0.5, and ε(tmax) = 0.001 (the same
training parameters as in chapter 4).

5.3.2 Results

For the ring-line-square and the vortex distributions, the results compare the
spherical with the cylindrical potential field, show the dependence on the two
parameters σ and q, and test the performance loss that was due to using a
reduced set for speed-up. On the sine-wave distribution and the kinematic
arm model, the recall is tested and compared to the mixture of local PCA.

Spherical compared to cylindrical potential

For the ring-line-square distribution, figure 5.3 shows the iso-potential curves
of a spherical potential field and a cylindrical potential field with q = 40. The
40 principal components explained 94.5% of the variance of the distribution
in feature space. The cylindrical field shows a more balanced potential field,
having valleys of almost the same depth. This difference is also reflected in
the quality measure (93.7% compared to 68.2%).

On the vortex distribution, the cylindrical potential with q = 40 could also
follow the shape of the distribution better then the spherical field (figure 5.4).
The 40 principal components explained 99.0% of the variance.

92 CHAPTER 5. KERNEL PCA FOR PATTERN ASSOCIATION

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

Figure 5.3: Iso-potential curves in the original space of a spherical potential
field (top row) and a cylindrical potential field (bottom row) with 40 principal
components in feature space. The right pictures show the iso-potential curves
enclosing an area of same size as the distribution (top: covering 68.2% of the data
points, bottom: covering 93.7% of the data points).

Dependence on the parameters

Kernel PCA depends on the number of principal components q and the width
of the Gaussian kernel σ. For the ring-line-square distribution, the quality
measure and the fractional variance, explained by the principal subspace in
feature space, increased with increasing q (table 5.1). A limit in the quality
was reached at about 30 principal components. For 20 principal components,
the covered variance also increased with the width σ. However, the quality
was almost constant about the tested σ values, with a slight peak at σ = 0.5
(table 5.2). For the same parameters, the results for the vortex distribution
were similar. Here, the optimum was at about σ = 0.1. The reason for the
difference is the smaller variance of the vortex distribution, which requires
the optimal σ to be smaller.

Speed-up

Using the speed-up, for the ring-line-square distribution, the potential field
based on the reduced set was only sightly impaired (quality: 92.5% compared
to 93.7%, compare also figure 5.5 with 5.3). On the vortex distribution, the
region surrounded by the iso-potential curve enclosing the same volume as
the distribution shows holes (figure 5.5). However, the approximation is still
reasonably good (quality: 85.0% compared to 95.0%).

5.3. EXPERIMENTS 93

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 5.4: Iso-potential curves in the original space of a spherical potential
field (top row) and a cylindrical potential field (bottom row) with 40 principal
components in feature space. The right pictures show the iso-potential curves
enclosing an area of same size as the distribution (top: covering 25.6% of the data
points, bottom: covering 95.0% of the data points).

Recall on synthetic data

To test recall, the sine-wave distribution was chosen, which included noise.
Thus, this task could also demonstrate the ability to generalize. 15 principal
components were extracted (explaining 84.8% of the total variance). The
output follows the shape of the sine wave, and it does not get distorted by
the outliers (figure 5.6). Here, the right balance of the number of principal
components was important. With too many (q=40) extracted components,
also the noise was included in the potential field.

The mixture of local PCA could also restore the input-output relationship
despite the noise (figure 5.7). Here, all noise points were assigned to one big

94 CHAPTER 5. KERNEL PCA FOR PATTERN ASSOCIATION

Table 5.1: Dependence of the quality Q and variance v—explained by q principal
components—on the number of principal components q, for σ = 0.3 and the ring-
line-square distribution.

q v Q

10 51.5% 77.1%
20 76.3% 86.5%
30 88.5% 94.2%
40 94.5% 93.7%

Table 5.2: Dependence of the quality Q and the variance v—explained by 20 prin-
cipal components—on the Gaussian width σ, for the ring-line-square distribution.

σ v Q

0.1 25.6% 85.6%
0.3 76.3% 86.5%
0.5 94.3% 87.7%
0.7 98.7% 82.2%

ellipse (in the center of the image). This ellipse did not disturb the recall
because the algorithm punishes large ellipsoidal volumes (section 4.2).

Kinematic arm model

The presented potential field method was further applied to the kinematic
arm model. Here, 150 eigenvectors were extracted (explaining 67.4% of the
total variance), and the reduced set was used. The pattern association based
on kernel PCA could learn the inverse one-to-many mapping (table 5.3).
However, the association with kernel PCA was worse than with the mixture
of local PCA (the position errors were about double). The results were
averaged over three separate training cycles. In the table, only averages are
shown; the variation was small (for the kernel PCA method the maximum
deviation of a position error from a mean value was 2 mm, and for the mixture
of local PCA 5 mm).

On this task with fewer training patterns as in section 4.5, NGPCA was
restricted to 100 units (in section 4.5, 200 units were used). Increasing this
number diminished the performance.

5.4. DISCUSSION 95

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 5.5: Iso-potential curves in the original space of a cylindrical potential field
with 40 principal components in feature space. Here, the speed-up as described
in section B.2 was used. The right pictures show the iso-potential curve enclosing
an area of same size as the distribution (above covering 92.5% and below covering
85.0% of the data points).

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

2.1 2.3 2.5

1.5

1.7

1.9

Figure 5.6: Recall in the kernel PCA model trained on a sine wave surrounded by
noise (training patterns can be seen in Figure 5.7). The black points show input-
output relations. The input is on the x-axis. The right image is a magnification of
the region marked with a square in the left image.

5.4 Discussion

A new pattern-association model was introduced. A potential field based
on the distribution of training patterns was constructed. In an infinite-

96 CHAPTER 5. KERNEL PCA FOR PATTERN ASSOCIATION

1 2 3 4 5 6

1

2

Figure 5.7: Recall in the mixture of PCA model (10 PCAs, with two principal
components each). The axes’ lengths of the ellipses equal the square root of the
eigenvalues. Gray points are the training data. The black lines show input-output
relations. The input is on the x-axis.

method direction input position error (mm) collision error (%)

kernel PCA inverse no collision 70 ± 33 2.1
kernel PCA inverse collision 75 ± 40 10.2
kernel PCA forward — 150 ± 64 20.5
mixture of PCA inverse no collision 40 ± 24 7.7
mixture of PCA inverse collision 38 ± 27 11.6
mixture of PCA forward — 66 ± 46 15.4

Table 5.3: Position and collision errors for an attractor network based on kernel
PCA compared to one based on a mixture of local PCA (100 units, q = 6). Results
are shown for two different directions of recall: forward and inverse. The inverse
model takes the desired collision state as an additional input variable (third col-
umn). Position errors are averaged over 1331 test patterns, and are given with
standard deviations. In the inverse case, the collision error is the percentage of tri-
als deviating from the collision input value; in the forward case, it is the erroneous
number of collision state predictions.

5.4. DISCUSSION 97

dimensional feature space—into which the patterns are virtually mapped—
the potential is the squared distanced to a subspace spanned by the principal
components. The corresponding field is called cylindrical. Instead of com-
puting in the feature space, the algorithm uses kernel PCA in the original
space.

The potential field gained from two-dimensional synthetic distributions
resembled accurately the shape of these distributions. Here, the cylindrical
potential field in feature space could describe a distribution better than a
spherical potential field. The reason is that the cylindrical field accounts for
the non-uniform variance in feature space (for ring-line-square, 40 out of 850
principal components described 94.5% of the variance). This comparison also
shows that the cylindrical potential field is better than the classical Parzen
window density estimator (see section 5.2.1). Given the promising perfor-
mance on this task, the model could also be applied to novelty detection.

The algorithm needs only two parameters: the number of principal com-
ponents q and the width σ of the Gaussian kernel. The first gives a control on
the complexity of the approximation of the data distribution. In the absence
of noise, increasing q increases the quality of the potential field. The number
q can be estimated with the help of the amount of variance explained by the
principal components; for example, 99% explained variance implies that is it
useless to extract more components.

The width σ should be adjusted to about 10% to 50% of the square-root
of the total variance of the distribution (the sum over all eigenvalues of the
covariance matrix). Small changes seem to have a minor influence on the
quality (table 5.2). While for higher σ the principal components explain
more of the distribution’s variance, the wider Gaussian functions occlude
more details.

In recall, the conjugate gradient method was used to minimize the po-
tential field along a subspace whose offset from zero is set by the input to
the network. It was demonstrated that the recall algorithm works well on a
synthetic distribution, despite the noise in the training set. In contrast, in
the models using all training patterns as attractors (Bachmann et al., 1987;
Dembo and Zeitouni, 1988), noise points are also attractors, and therefore
lead to undesired completions.

The presented relaxation model was further tested on a kinematic arm
model. It could cope with the one-to-many mapping (a feed-forward network
fails on this task, see section 4.5). The error on the forward mapping was
higher (about double) than on the inverse mapping. The reason is possibly
the same as discussed in section 4.6.

On the kinematic arm task, the local PCA mixture model did better
then the kernel PCA model. The reason might be the multivariate shape of
the ellipsoids. In contrast, the kernel PCA model is composed of univariate

98 CHAPTER 5. KERNEL PCA FOR PATTERN ASSOCIATION

Gaussians in the original space (5.6). In the univariate case, many Gaussians
might be needed to describe a multivariate structure, which can be described
by a single ellipsoid (figure 3.1). The composition of univariate units also
results in the sinus-shape-like approximation of a tilted line (figure 5.6, right).

On the kinematic arm data, the mixture model NGPCA was at a limit.
With fewer training patterns as in section 4.5, also the number of units needed
to be smaller. However, adding more patterns does not necessarily require
a longer computation time. In section 4.5, the number of training steps was
the same (tmax = 400 000); thus, also the computation times were equal. In
contrast, for kernel PCA, increasing the number of patterns n comes at a
high cost (the kernel matrix is n× n).

Kernel PCA is computationally demanding. On an Athlon XP 2200+
with 1 GB RAM with a compiled C++ code of the algorithm, the computa-
tion of the kernel matrix and the 15 principal components for the sine-wave
distribution took about 14 sec. The computation of the reduced set with
m = 85 took 101 sec, and using the reduced set, the mean recall time was
0.058 sec. In comparison, on the same computer with the same distribution,
the mixture model—which was composed of 10 units with two principal com-
ponents each—had a training time of about 3.7 sec, and a mean recall time
of 0.14 msec (about 400 times faster).

The cylindrical potential differs from the square error in the denoising
application of kernel PCA (Mika et al., 1999). In denoising of a pattern x,
its mapping Φ(x) is projected onto the subspace spanned by the principal
components in feature space—the same subspace we use for our potential.
The denoised pattern z is obtained by minimizing the squared distance be-
tween Φ(z) and the projection of Φ(x). In contrast, our potential is the
squared distance between Φ(z) and its own projection onto the subspace.
This difference is illustrated in figure 5.8.

(z)

Φ

Φ

(x)

principal component

denoising distance
p

Figure 5.8: Difference between the distance to be optimized in denoising and our
potential p.

5.4. DISCUSSION 99

Kernel PCA requires fewer parameters than a mixture model, but the
pattern association based on kernel PCA did worse than the abstract RNN
based on a mixture of local PCA. In the next chapter, both methods are
applied to visually guided grasping.

100 CHAPTER 5. KERNEL PCA FOR PATTERN ASSOCIATION

Chapter 6

Visuomotor model for a robot arm

The pattern-association methods from chapter 4 and 5 are applied to a robot
arm, which is equipped with a camera. An object can be grasped by associ-
ating the object’s image with an arm posture. Arm postures can be recalled
without sensory feedback (open-loop). This enables the robot to perceive
(to understand) the position and orientation of an object by associating an
appropriate grasping posture and not by mapping the image coordinates to
the three-dimensional space. Training data were collected by random ex-
ploration. With image preprocessing steps comparable to functions that are
known to be performed by the primary visual cortex, the dimensionality of
the original images was reduced. On the other hand, the dimensionality of the
posture, defined by six joint angles, was increased. This increase improved
the performance.

6.1 Visual guided grasping

The robot’s task is to reach for and grasp an object that is seen through a
camera. The literature on related tasks is briefly reviewed. In the present
study, the object is a rectangular shaped brick positioned on a table. Re-
dundant robot arm postures exist to grasp the brick at a given location and
orientation. The abstract RNN can cope with this redundancy. However,
it cannot associate the arm posture simply from the original image. The
high-dimensional image data require preprocessing.

6.1.1 Related work

The presented robot model differs essentially from previous reaching-and-
grasping studies. These alternatives differ in at least one of the following
three points.

First, some studies work either with reaching or with grasping. For ex-
ample, Ritter et al. (1989) and Walter et al. (2000) made a robot reach to

101

102 CHAPTER 6. VISUOMOTOR MODEL FOR A ROBOT ARM

a point light, which was given in image coordinates. Molina-Vilaplana et al.
(2004) also used a point as target. On the other hand, Uno et al. (1995)
trained only a robot hand on samples provided by a human equipped with
a data glove, and Fuentes and Nelson (1998) manipulated objects that were
already in between the gripper.

Second, some studies rely on a representation of the target object in three-
dimensional Cartesian space. For example, Cipolla and Hollinghurst (1997)
and Molina-Vilaplana et al. (2004) used stereo vision to compute directly the
target’s coordinates. To compute the target’s orientation, Salganicoff et al.
(1996) fitted an ellipsoid to three-dimensional data of the target from a laser
scanner. Fuentes and Nelson (1998) moved an object with a robot hand
by manually providing goal coordinates. Furthermore, like the kinematic
arm model in section 4.5, most simulations have as input Cartesian goal
coordinates. For example, Oztop et al. (2004), who simulated a human-like
arm and hand, used the target’s coordinates to compute the arm-joint angles.

Third, some studies operate in closed-loop. Here, the inverse model pro-
duces incremental joint-angle changes (Distante et al., 2000; Molina-Vilaplana
et al., 2004). Using reinforcement learning, for example, a robot arm can
learn to choose the correct reaching direction (Distante et al., 2000).

Closest to our approach is the work by Kuperstein (1988, 1990). His robot
can grasp an elongated object in different orientations by mapping visual
data onto motor activation that leads to an arm posture. The mapping is
carried out by a neural controller. Its training data were gained by sampling
randomly the motor space. Different from the abstract RNN, Kuperstein’s
neural controller is a function from sensory input to motor output and can
therefore not cope with one-to-many mappings.

6.1.2 High-dimensional image data

The visuomotor model associates image data with an arm posture. However,
the original images cannot be used as part of a training pattern for a mixture
of local PCA. Image processing is required, since the dimensionality of the
original images is too high and the correlation between neighboring pixels
too low. This problem is illustrated in the following example.

A mixture model is trained on images that show an enlongated object
that can be grasped. Figure 6.1 displays sample images, which show position
and orientation of the object. For simplicity, the images are binary, and the
object occupies three pixels. Each image can be written as a vector. Let, E
be the squared distance between two image vectors x and y:

E =
∑

i

(xi − yi)
2 . (6.1)

6.2. METHODS 103

In figure 6.1, the squared distance between A and B is E = 6. The same
value holds for all cases in which two images have no overlapping object
pixels. These images are in the following called ‘disjoint images’. On the
other hand, the distance between A and C is smaller, namely E = 4. Thus,
rotated objects lie closer to each other than objects at different positions.
Two problems result from these facts. First, a density model used to describe
the distribution of the disjoint images is meaningless if they all have the same
distance to each other. Second, in training, the centers of the mixture model
would distribute among disjoint images and average over overlapping images
(because of the smaller distance in the second case). Thus, the orientation
of the object gets lost. Therefore, the images must be preprocessed.

x1 x x . .
2 3

. B CA y1 y y . .
2 3

. z1 z z . .
2 3

.

Figure 6.1: Figures A, B, and C show three sample images with corresponding
data vectors x, y, and z. White pixels have the value zero, and gray pixels the
value one.

6.2 Methods

First, the robot collected samples of images of an object and corresponding
grasping postures. Afterward, training patterns were obtained by processing
the images and coding the posture angles redundantly using tuning curves.
The resulting distribution of patterns was approximated by a mixture of local
PCA. After presenting an object, based on the approximation, a grasping
posture could be recalled.

6.2.1 Robot setup

The setup was composed of a six-degrees-of-freedom (6 turning joints) robot
arm (Amtec Robotics) with a linear two-finger gripper and two cameras
mounted on a pan-tilt unit (figure 6.3). However, just one camera was used,
and its direction was fixed. The camera image was in color and had a resolu-
tion of 320× 240 pixels. For grasping, a rectangularly shaped (74× 24× 24

104 CHAPTER 6. VISUOMOTOR MODEL FOR A ROBOT ARM

mm) red brick was placed on a table in front of the cameras and the arm.
The illumination in the room was kept constant.

6.2.2 Data collection

Random exploration was used to collect training data. Initially, the robot
arm was in a resting posture, such that it did not occlude the table from the
perspective of the camera. Further, the red brick was put in-between the two
gripper fingers. One training trial was composed of several steps.

First, a random position on the table (within a 40× 30 cm rectangle—its
extension on the table can be seen in figure 6.2) and a random orientation
(0◦ to 360◦) were chosen. To make the gripper tip to take this position and
orientation, a suitable arm posture was found by solving analytically the
inverse kinematics1.

Figure 6.2: Area of brick positions in the training-data set (view from the left
camera). The dark area is the sum over all brick images.

For a given end-effector position and orientation, up to eight solutions
of the inverse kinematics exist. At least two solutions exist for any target
position, because a 180◦ turn of the joint near the gripper does not have an
effect on the grasp. Thus, each image of the brick gives rise to redundant
joint-angle sets. For the data collection, one solution was chosen at random.

The resulting arm posture is called a ‘grasping’ posture. In addition to
the position on the table, a second one 60 mm directly above was chosen,
and the corresponding joint angles were obtained, as described above. This
second posture is called ‘pre-grasping’ posture (figure 6.3). Both postures
were stored.

1This is a technical shortcut to avoid using a controller that brings the end-effector
close to the table surface. The use of the inverse kinematics may be interpreted as an
external teacher that guides the arm to random positions on the table.

6.2. METHODS 105

Figure 6.3: Pre-grasping (left) and grasping posture (right).

In the next step, the robot put the brick on the table. Between two
postures, the joint angles were transformed simultaneously and linearly. The
arm moved via the pre-grasping to the grasping posture. The use of the
pre-grasping posture eases the picking up and putting down of bricks on the
table, because collisions with the table and the brick are avoided. These
collisions would occur if the arm would turn directly from the resting to the
grasping position.

After the brick was put on the table, the arm moved again to the resting
position. At this stage, an image from the left camera was taken. Since
all brick positions were on a table surface, stereo vision was not necessary.
Afterward, the arm repeated the above movement sequence to take back the
brick. This concludes one trial. In total, 3371 training patterns and 495 test
patterns were collected.

6.2.3 Image processing

The image processing extracts information on the position and on the orien-
tation of the brick (section 6.1.2). The processing consists of several steps:

First, gray-scale images were produced using a contrast mechanism to
enhance red (R− (G+B)/2, using the RGB-color code). In these images, a
rectangle was determined that enclosed the brick in all images (figure 6.4).
In the following, only the image region within this rectangle was further
processed.

106 CHAPTER 6. VISUOMOTOR MODEL FOR A ROBOT ARM

The brick appears almost as a white spot within the contrast image. Thus,
a coarse grained version of the image provides a redundant code for the
brick’s position (figure 6.4). This population code was gained by using a grid
of 4 × 4 ‘neurons’ with Gaussian receptive fields. Their centers covered the
image uniformly, and the Gaussian width was equal to the distance between
two neighboring centers. The resulting 16 activation values were one part of
a training pattern. Thanks to the blur in the coarse image, brick locations
that were close to each other were also close in the space of the 16 activation
values (compare to section 6.1.2).

coarse imageoriginal image contrast image

Figure 6.4: Preprocessing to obtain the position information. The coarse-grained
image was gained from the area inside the rectangle in the contrast image.

121 48 40 99
���������

Figure 6.5: Preprocessing to obtain a population code (numbers in bottom row) of
the brick’s orientation. The first image on the left is the region inside the rectangle
within the contrast image in figure 6.4. The columns show the preprocessing steps
for each compass filter (top): first, the result of applying the filter, second, the
result of applying a threshold, and third, the sum of white pixels in the threshold
image.

To obtain a population code for the orientation, the contrast image was
first blurred. Then, four compass filters enhanced the edges in four different

6.2. METHODS 107

directions (figure 6.5). To the four resulting images, a threshold function was
applied (figure 6.5). The remaining pixels in each image were counted to give
a value for the distribution of edges in a given direction (figure 6.5). The
result is a histogram showing the edge-direction distribution in the contrast
image. Such a histogram can uniquely encode the orientation of the brick at
a given location. The four values of this histogram were the second part of a
training pattern.

6.2.4 Tuning curves

A training pattern combines visual and postural information. The visual
part contains the activation of the 16 Gaussian position neurons and the
edge-orientation histogram. Position and orientation were thus represented
with a population code.

To obtain also a population code for each joint angle, an angle ϕ was
represented by the activation of four neurons with Gaussian receptive fields,
ai = exp(−(ϕ − ϕi)

2/(2σ2)) (using a population code enhanced the perfor-
mance, see section 6.3). Each of these Gaussians is a tuning curve tuned
to the angle ϕi. The Gaussian centers ϕi were uniformly distributed within
the maximal range of each angle. The width σ was set equal to the distance
between two neighboring centers (figure 6.6).

� � �

min

activation

max

σ

Figure 6.6: A population of four broadly tuned neurons encodes each joint angle
ϕ. The circles show the activations for the angle marked by the thick arrow.

All joint angles of the pre-grasping and the grasping posture were therefore
encoded in 48 variables, which form the postural part of a training pattern.
The final patterns were thus 68-dimensional. Before training, the patterns
were normalized to have unit variance in each dimension. The resulting
normalization constants were also applied to the test patterns.

108 CHAPTER 6. VISUOMOTOR MODEL FOR A ROBOT ARM

6.2.5 Training

In training, the local PCA mixture models NGPCA, NGPCA-constV, and
MPPCA-ext were used (chapter 3). On the pattern association task, they
were compared to kernel PCA (chapter 5), to a look-up table, and to a multi-
layer perceptron. All of them used the same preprocessed pattern set.

Section 3.3 mentioned that MPPCA-ext comprises the following two mod-
ifications: a correction for ‘empty’ units and the use of an on-line PCA al-
gorithm, which allows that noise can be added to each presented training
pattern. On the visuomotor data, these two modifications turned out to
be essential because otherwise, the algorithm became numerically unstable;
some eigenvalues dropped to zero.

For the mixture models, 120 units and four principal components were
used. The number of principal components was chosen after inspecting the
local dimensionality of the pattern distribution. As described in section 4.5.1,
the ratio of successive eigenvalues, averaged from a PCA in the neighborhood
of each training pattern, has a peak at the local dimensionality of the dis-
tribution (Philipona et al., 2003). On the collected data, the first peak is
at three (figure 6.7, left). This matches the expectation, since the brick had
three degrees of freedom: two for the position and one for the orientation.

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2 4 6 8 10 12 14

λ
λ

q
q

dimension q

+1

data point
manifold

local PCA

x

y

Figure 6.7: (Left) Ratio of successive averaged eigenvalues λq and λq+1. (Right)
Illustration that additional principal components (here, one in y-direction) can
account for the additional variance that results from the manifold’s curvature.

Different from the kinematic arm model in section 4.5, however, figure
6.7 shows a second peak at five dimensions. The reason is probably that in
the real robot task, the neighborhood of a pattern also covers the turns and
twists of the underlying manifold because the data are much more sparse
(3371 training patterns lie in a 68-dimensional space, compared to 50 000
patterns in ten dimensions for the kinematic arm model). A turn increases

6.2. METHODS 109

the local variance (figure 6.7, right). Therefore, for the mixture model, four
principal components were chosen instead of three (this also improved the
performance).

For NGPCA and NGPCA-constV, two sets of training parameters were
used. Set 1 had ρ(0) = 1.0, ρ(tmax) = 0.00001, ε(0) = 0.1, ε(tmax) = 0.01, and
tmax = 400 000. Set 2 had the same parameters as the kinematic arm model
(section 4.5): ρ(0) = 10.0, ρ(tmax) = 0.0001, ε(0) = 0.5, ε(tmax) = 0.001, and
tmax = 400 000.

Kernel PCA extracted 150 eigenvectors and used an inverse-multiquadratic
kernel with width σ = 7.0 (see section 2.4.3). In the 68-dimensional space,
distances are larger than in the previous applications (chapter 5). Thus, the
inverse-multiquadratic function was of advantage since it does not decline as
quickly as a Gaussian function. Moreover, a reduced set with m = 1000 was
used (appendix B.2).

The look-up-table method chooses a pattern from the training set whose
visual part has the smallest Euclidean distance to the presented input. The
multi-layer perceptron maps the visual part to the postural part. A structure
with one hidden-layer, containing 20 neurons, was used. The hidden neurons
had sigmoid activation functions. The weights were initialized with random
values drawn uniformly from the interval [−0.5; 0.5]. For training, 3 000
epochs of resilient propagation were used (Riedmiller and Braun, 1993).

6.2.6 Recall

In recall, an image from the test set was presented and processed as in section
6.2.3. The resulting 20 dimensional vector defined an offset of a constrained
space. Its intersection with the mixture of local PCA provides the output
(chapter 4).

Four different methods were compared: the abstract RNN based on a
mixture of local PCA, the pattern association based on kernel PCA, the
look-up table, and the multi-layer perception. For these methods, the average
recall time was measured. All of them were implemented in C++ and were
running on an Athlon XP 2200+ with 1 GB RAM.

After recall, each joint angle is given as a population code. Each of the
four values ϕi has an activation ai (section 6.2.4). To obtain the joint angle,
a Gaussian function was fitted to the points (ϕi, ai). Its center equals the
desired angle.

With the resulting set of joint-angles, the robot arm is able to grasp the
brick by moving from the resting via the pre-grasping to the grasping posi-
tion. To evaluate off-line the grasping performance on the test set, however,
further processing is required. The joints angles were transformed into a
gripper position and orientation using a geometric model of the arm (see

110 CHAPTER 6. VISUOMOTOR MODEL FOR A ROBOT ARM

also section 4.5). The resulting values were compared with the coordinates
and orientation of the brick (given in the test set). This comparison gives
quantitative errors of position and orientation. Further, a geometric model
of gripper tips and brick could determine if the grasping was actually suc-
cessful. The calculated rate of successful grasps was in agreement with a test
on the operating robot (within 1%). Here, the brick was placed 100-times by
hand on arbitrary table positions.

6.3 Results

The abstract RNN trained with MPPCA-ext did best at the grasping task,
and NGPCA-constV was better then NGPCA (table 6.1). Furthermore, both
NGPCA and NGPCA-constV were sensitive to the parameter set. A good
performance was only achieved with fine tuned parameters different from
the ones used in chapter 4. Kernel PCA could compete with the local PCA
mixture models on the grasping performance, but not on the recall speed,
which was about 2 000-times slower. All of the new methods presented in
this thesis were better than a look-up table; the multi-layer perception failed
since it cannot cope with redundant arm postures (see also section 4.5).

method pos. error orient. error grasp success recall time
(mm) (degrees) (%) (sec)

MPPCA-ext 7 3.9 95 0.015
NGPCA1 9 4.0 90 0.015
NGPCA2 42 4.9 61 0.015
NGPCA-constV1 8 4.0 93 0.015
NGPCA-constV2 26 5.6 77 0.015
kernel PCA 9 4.6 93 31.000
look-up table 13 4.8 87 0.017
MLP 236 54.3 0 < 0.001

Table 6.1: Position error, orientation error, the rate of successful grasps, and the
recall time for one trial. The values were averaged over all test trials. The indices
for the NGPCA variants refer to the number of the training-parameter set.

Over five different training cycles, the performance of the local PCA
mixture models varied only slightly (table 6.2). MPPCA-ext and NGPCA-
constV showed less variation compared to NGPCA. The advantage both have
over NGPCA is probably also related to the difference in the distribution of
assigned patterns per unit (or prior probabilities per unit in the MPPCA-ext
case). MPPCA-ext and NGPCA-constV resulted in bell-shaped distribu-

6.3. RESULTS 111

method position error orientation error grasp success
(mm) (degrees) (%)

MPPCA-ext 7.3± 0.2 3.9± 0.2 95.2± 0.7
NGPCA 9.1± 0.8 4.0± 0.4 90.0± 1.4
NGPCA-constV 8.0± 0.2 4.0± 0.2 93.1± 0.2

Table 6.2: Average performance over five different training cycles. Standard
deviations are given. NGPCA and NGPCA-constV used parameter set 1.

tions; NGPCA resulted in a second peak with 34 units that have less than
eight assigned patterns (figure 6.8).

In the presence of noise, the abstract RNN (tested with MPPCA-ext)
showed a more robust performance than the look-up table (table 6.3). A
second training data set was generated with noise uniformly drawn from the
interval [−0.1; 0.1] and added to each component of each pattern. On this
set, the number of successful grasps decreased only from 95% to 91% for the
abstract RNN; for the look-up table, it decreased from 87% to 57%.

The last test, also using MPPCA-ext, demonstrates the utility of the pop-
ulation code (table 6.4). Two data-processing variants were used. The first
had no population codes; each training pattern contained the brick’s center of
mass in the contrast image, the tilt angle of the main axis of the brick within
the image, and the 12 joint angles. Here, despite the reduced dimensionality
(15 compared to 68), the number of successful grasps decreased from 95% to
90%. The second variant used the same image processing as in section 6.2.3,
but did not encode redundantly the joint angles. This variant decreased the
success rate from 90% to 83%.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80

NGPCA
NGPCA-constV

0

5

10

15

20

25

30

35

40

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

MPPCA-ext

n

number of assigned patterns prior probability

n

Figure 6.8: Histogram of assigned patterns, respective prior probabilities. n is the
number of units for each interval. NGPCA and NGPCA-constV used parameter
set 1.

112 CHAPTER 6. VISUOMOTOR MODEL FOR A ROBOT ARM

method position error orientation error grasp success
(mm) (degrees) (%)

abstract RNN 7.3 3.9 95
abstract RNN, noise 9.0 3.7 91
look-up 13.0 4.8 87
look-up, noise 17.5 5.2 57

Table 6.3: Performance of the abstract RNN (here, using MPPCA-ext) compared
to a look-up table. A second training set was used with noise (10% of the standard
deviation of the distribution) added to each pattern.

population code position error orientation error grasp success
(mm) (degrees) (%)

yes 7.3 3.9 95
no 9.1 2.3 90
only for vision 7.4 14.4 83

Table 6.4: Performance of the abstract RNN with MPPCA-ext using different
pattern processing modes (see text).

6.4 Discussion

The abstract recurrent neural network based on the mixture of local PCA
and the pattern association based on kernel PCA could both be applied
successfully to learn visually guided reaching and grasping. Herein, the recall
on the mixture of local PCA was 2 000-times faster than on kernel PCA.

MPPCA-ext did better on this task than NGPCA and NGPCA-constV.
The distribution of training data is sparse (3371 patterns in 68 dimensions)
and thin (locally three-dimensional and little noise). In these cases, MPPCA-
ext proved to be better than the NGPCA variants (figure 3.7 and 3.8). NG-
PCA had problems with dead units (units with no patterns assigned to), see
figure 6.8. As expected in section 3.2.1, the modification NGPCA-constV
could solve this (figure 6.8). Both NGPCA variants were sensitive to the
choice of training parameters (table 6.1).

Reaching and grasping were achieved by associating final arm postures,
and not by planning trajectories. This association is consistent with the
finding that in the monkey, the stimulation of certain motor cortex neurons
leads to hand locations independent of the initial arm posture (Graziano

6.4. DISCUSSION 113

et al., 2002). Moreover, such an association may explain why neurons in the
premotor cortex area F5 fire both during the presentation of a tangible object
and during the grasping of the object (Rizzolatti et al., 1988; Murata et al.,
1997; Rizzolatti and Fadiga, 1998). Murata et al. (1997) wrote, “the visual
features are automatically (regardless of any intention to move) ‘translated’
into a potential motor action” (p. 2229).

The present study further showed that on the one hand, the dimensionality
of the original images needs to be reduced, and on the other hand, it cannot
be reduced too much; redundancy proved to be helpful. Also in the brain
redundancy is widespread. It probably has the following two effects:

First, as mentioned in section 5.1, data points in a higher-dimensional
space are more likely to be linearly separable (Cover, 1965). Therefore, they
can be better described by locally linear models.

Second, the redundant coding reduces the effect of noise (Latham et al.,
2003). The small effect that the noise had on the performance of the abstract
RNN (tabel 6.3) can by part be explained with redundancy. The extend of
the end-effector positions on the table was 30× 40 cm. Thus, without pop-
ulation coding, a 10% noise leads to a position error with variance 208 mm2

(given a uniform noise distribution). Compared to this value, the increase
in the variance of the position error for the look-up table—which cannot use
averaging for noise compensation—was smaller (17.52 − 13.02 = 137 mm2).

For the low performance when using a population code only for the visual
information (table 6.4) another explanation was found. Here, the input is 20-
dimensional, and the output is only 12-dimensional. In addition, for the same
input, redundant postures were possible that only differed in the joint angle
near the gripper (section 6.2.2). Thus, the corresponding training patterns
differed in only two out of 32 dimensions (one for pre-grasping and one for
grasping). Since these patterns were therefore relatively close, they were
both assigned to a single unit in the mixture model. Finally, in recall, the
output was averaged over the redundant postures within one unit, and this
resulted in an erroneous orientation of the gripper. This explains the higher
orientation error, while the position error was almost the same as in the case
with population coded angles (table 6.4).

The image processing in this chapter relates to biology in several ways.
First, it is parallel and local within the image. Second, a compass filter is a
simplified version of a simple cell in the primary visual cortex (V1) (Hubel
and Wiesel, 1962). Third, like neighboring V1 cells (Blasdel and Salama,
1986), neighboring Gaussian activation functions (coarse image) respond sim-
ilar to a given stimulus. And fourth, the final preprocessed information is
given in population codes.

Population codes and tuning curves are widespread in the brain. Tuning
curves can be observed, for example, in the monkey for the direction of

114 CHAPTER 6. VISUOMOTOR MODEL FOR A ROBOT ARM

moving stimuli (Treue and Trujillo, 1999) and in the cricket for the airflow
direction (Miller et al., 1991). The abstract RNN can directly associate
one population code with another one, without decoding to scalar values2.
For the robot arm, the population-coded joint angles were decoded. For a
biological system, however, such a step can be omitted since a population
code can directly act on a muscle. A theoretical account on this was given
by Baldi and Heiligenberg (1988).

The presented robot-arm setup and the flexibility of the abstract RNN
offer several options to extend the task: First, the retinal object position
(coarse image) can be replaced by information on the gaze direction of the
cameras. This was achieved in cooperation with Wolfram Schenck (Schenck
et al., 2003). In that study, a saccade controller (Schenck and Möller, 2004)
controlled a pan-tilt unit, which supported the stereo camera system. The
saccade controller learned to fixate the brick on the table. Then, the tilt
and pan variables that define the gaze direction were encoded with tuning
curves, as in section 6.2.4. The resulting population codes and the edge
histogram were enough to associate an arm posture for grasping. However,
the saccade controller required feedback from the environment, and therefore,
an understanding of the object’s location with covert motor commands is not
possible anymore.

Second, monocular vision can be extended to stereo vision. The image
processing can be applied to both cameras separately, and the resulting pop-
ulation codes can all be fed into the abstract RNN. Stereo vision would allow
grasping in three-dimensional space (Kuperstein, 1990). However, it is dif-
ficult to collect training samples because an object held by the robot is at
least partially occluded by the gripper.

Third, for grasping, the training set can be extended to bricks that do
not lie, but stand on the table. A standing brick can be put on the table
with the gripper in a horizontal orientation. Then, the abstract RNN would
learn both: lying bricks and standing bricks. As a result, the image of a
standing brick would associate a different gripper orientation than the image
of a lying brick. The robot could therefore perceive (or understand) if the
brick is standing or lying depending on the associated arm posture.

Fourth, the training set can be extended to include other objects. Different
objects can be grasped in different ways. The analysis of associated grasping
postures could therefore be used to identify the objects3. However, this

2Using an RNN to compute with population codes, instead of extracting the value of
the stimulus, was also suggested by Pouget et al. (2003). The authors reviewed compu-
tational studies that refer to neuroscience, but did not mention robotics studies.

3The model of Uno et al. (1995) recognized objects by associating pictures with pre-
hensile hand shapes using an auto-associative network.

6.4. DISCUSSION 115

association would not solve object constancy4, since the association of arm
postures cannot do better than a classification of object images. A solution to
object constancy could be to anticipate the sensory consequence of a sequence
of motor commands (section 1.4.3, (Möller, 1999)). Chapter 7 presents a
mobile robot that simulates such a sequence.

4Object constancy means that an object can be recognized independently of the per-
spective and the illumination.

116 CHAPTER 6. VISUOMOTOR MODEL FOR A ROBOT ARM

Chapter 7

Forward model for a mobile robot

This chapter investigates whether both planning goal-directed movements
and judging the geometry of the surroundings can be based on a forward
model (Hoffmann and Möller, 2004). Tests were done with a mobile robot,
which was equipped with a camera. A forward model was put into effect
either as a multi-layer perceptron (MLP) or as an abstract recurrent neural
network (RNN). The robot collected training data by random exploration.
A training pattern for the forward model was obtained from two successive
images and the corresponding motor commands. To predict the sensory con-
sequence of a sequence of motor commands, multiple copies of the trained
forward model can be linked to a chain. On this prediction, a chain of MLP
was more accurate than a chain of abstract RNNs. For goal-directed move-
ment planning, an optimization method yielded the required motor com-
mands. For judging the geometry of the surroundings, the simulation of
covert motor commands revealed the connection between self-motion and
sensory input.

7.1 Introduction

This chapter connects to the concept of perception being based on sensorimo-
tor models, as described in section 1.4.3. Several tasks serve as an illustration
of the principle.

7.1.1 Motivation

The demonstration has mainly two purposes: First, it shall show that a
forward model can serve as a building block that allows to use simulation
either for planning actions or for perceiving space. Such an approach does
not need a world representation based on a coordinate frame, or any one-
to-one mapping from the world to an internal representation (Möller, 1999;
Jirenhed et al., 2001; Hesslow, 2002; Grush, 2004).

117

118 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

Second, the demonstration shall show how the mastery of sensorimotor
relations, which is proposed by Möller (1999) and O’Regan and Noë (2001)
to be the basis of visual perception, might lead to an understanding of the
geometry of the surrounding (section 1.4.3). In particular, in one task, it is
shown that this mastery can take advantage of the spatial symmetry. Thus,
symmetry can be perceived (detected) without having a sensory represen-
tation that reflects this symmetry, as in the thought experiment with the
perception of a straight line (O’Regan and Noë, 2001), see section 1.4.3.

7.1.2 Tasks

In all experiments, the robot was located inside a circle of obstacles. First,
the robot collected training data by randomly choosing wheel velocities and
taking images through his omni-directional camera in intervals of two sec-
onds. Then, each image was processed to obtain a lower-dimensional sensory
representation. On two successive sensory representations and corresponding
wheel velocities, a forward model was acquired either by using an MLP or
by using the abstract RNN (chapter 4).

A single forward model can predict the future sensory input St+1 after a
two second interval given the current sensory input St and the current wheel
velocities Mt. In a chain of forward models, the sensory output at link t is
feed into the sensory input at link t+ 1. Thus, the chain can anticipate the
sensory consequence of a series of motor commands.

In a first test, the anticipation performance was evaluated on a separate
test set that contains random movement sequences. The changes in predic-
tion error with an increasing number of prediction steps are analyzed for the
multi-layer perceptron, the abstract RNN, and compared to a theory of the
error accumulation (appendix C.3).

In the first task, the forward-model chain was applied to find a series of
velocity commands that makes the robot reach a goal state. The goal state
was defined within the sensory domain. The difference between the goal state
and the final predicted sensory state defined a cost function. By minimizing
this cost function, using either simulated annealing or Powell’s method (Press
et al., 1993), an appropriate series of velocities was found.

In the second task, the robot had to detect whether it was standing in the
center of the circle or not. The robot could solve this task by simulating a
turn around its rotational axis and by predicting the resulting sensory input.
Because of the match between the robot’s rotational axis and the symmetry
axis of the world, the invariance in time of the predicted sensory state reflects
the spatial invariance in the world.

In the third task, the robot had to judge the relative distance to obstacles,
despite the non-linear mapping from the world to the camera image. This

7.2. METHODS 119

was also achieved by mental transformation. Here, a forward movement was
simulated. The number of simulated movement intervals that were needed to
reach the obstacle in front was counted. This number served as an estimate
of the relative distance to an obstacle. Thus, the robot can perceive the
real geometric relations, which are a priori not accessible to a pure sensory
representation. Mallot et al. (1992, p. 16) also mentioned the possibility that
distance can be perceived as ‘time-to-contact’.

7.2 Methods

This section describes the robot setup, the data collection by random ex-
ploration, the image processing, the acquiring of a forward model with a
multi-layer perceptron and with an abstract recurrent neural network, and
the methods for the two basic task sets: goal-directed movement planning
and mental transformation.

7.2.1 Robot setup

A Pioneer 2 AT four-wheel robot from ActivMedia Robotics was used (see fig-
ure 7.1, left). It has differential steering and was equipped with a panoramic
vision system based on an omni-directional hyperbolic mirror (‘middle size,
wide view’) from Accowle (figure 7.1, right)1. The camera’s optical axis was
positioned 12 cm in front of the robot’s rotational axis. Images were grabbed
at a resolution of 640 × 480 pixels. A circularly shaped cover on top of the
mirror prevented light entering directly into the lens without reflexion from
the mirror. The illumination of the room was kept constant during training
and tests.

7.2.2 Data collection

Training and test data were collected using two different random exploration
schemes.

Training data

The training data contain series of images induced by given motor commands.
The robot was put within a circle with an inner diameter of 180±2 cm formed
by red bricks (figure 7.1, left).

1A DFK 4303/P camera and a Pentax TS2V314A lens were used.

120 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

Figure 7.1: (Left) Pioneer robot with omni-directional camera surrounded by 15
red obstacles. (Right) Panoramic vision system.

Random velocities were chosen for the left and right wheels individually
(vL and vR). The velocities ranged from−60 mm/sec to 60 mm/sec in steps of
20 mm/sec. The combination with both velocities being zero was discarded.

After a set of velocities was chosen, the robot maintained the given speed.
Every two seconds, an image was recorded from the camera (figure 7.3, left)
and stored. Recording started after granting the robot a one second accel-
eration phase. The movement lasted up to a maximum of six shots (five 2
sec intervals) or until the robot got too close to one of the obstacles (this
was determined with the help of the same kind of image preprocessing as
described in section 7.2.3). In both cases, a new combination of velocities
was chosen, and a new recording series started.

In the second case, however, the choice of velocities was restricted. The
robot was only allowed to go either forward or backward, depending on if the
obstacle was in the back or front. Forward movements were chosen randomly
from a subset that fulfills vLvR ≥ 0 and vL + vR > 0. Backward movements
were chosen in an analogue way (vLvR ≥ 0 and vL + vR < 0).

This data-collection scheme would result in more forward and backward
movements against rotational movements (which fulfill vLvR < 0) because the
robot was not allowed to do turns when it was close to obstacles. Therefore,
when a rotation was possible, the rotational movements were chosen with
a higher probability to adjust toward a balanced distribution of velocity
combinations.

The actual wheel velocity was recorded during the 2 sec intervals. If it de-
viated by more than 10 mm/sec from the given value the series was stopped,

7.2. METHODS 121

and the interval’s was data discarded. After that, a new series started, as
above. The robot was able to pursue this kind of random exploration auto-
matically without getting into physical contact with any obstacle.

In total, 5466 intervals with 6808 images were recorded. The velocities
were roughly evenly distributed (figure 7.2). Straight movements (vL = vR)
slightly dominated, and there were fewer slow turns like vL = 0 and vR = 20
mm/sec. The explanation is that the lateral friction between wheels and
floor made the robot occasionally stick to the ground during slow turns, so
these movements were discarded.

 0

 40

 80

 120

 160

-60 -40 -20 0 20 40 60

-60

-40

-20

 0

 20

 40

 60

vL [mm/s]

vR

[mm/s]

frequency

Figure 7.2: Distribution of velocities vL and vR.

Test data

For an off-line evaluation of the anticipation performance, test data were
collected using a slightly different random exploration scheme. The goal was
to get random movement sequences instead of series with a constant motor
command.

For each interval, a new random velocity combination was used. A record-
ing series consisted of eight 2 sec intervals starting from zero velocity. The
first interval was discarded, thus leaving seven intervals each under identical
conditions. The wheel velocity was monitored in the last 0.7 sec of each inter-
val. If its mean value deviated by more then 10 mm/sec from the given value
the whole recording series was discarded. Therefore, the limited acceleration
required to make the random choice of velocities slightly dependent on the

122 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

previous choice. Absolute velocity changes of more than 60 mm/sec for each
wheel were not allowed.

The choice of velocities in each interval further depends on the encounters
with obstacles. If the obstacle was in the front the robot moved backward,
and if it was in the back the robot moved forward (same way as done for
the training data). Additionally, the robot responded to an obstacle on
the left or right side by turning the front of the robot toward the obstacle
(choosing |vL| > |vR|, vL > 0, and vR < 0 for obstacles on the right side, and
accordingly for the left side, changing roles of vL and vR). The turn toward
the obstacle was then followed by a backward movement.

Such a response to the obstacles allowed the rear part of the robot to
keep a larger distance to the circle. This was necessary since the mirror was
located in the frontal part of the robot (see figure 7.1), and thus the bottom
part of an obstacle close to the rear part of the robot was occluded. Totally,
138 test series were recorded, with a total of 966 intervals and 1104 images.

7.2.3 Image processing

It proved to be impossible to use the original visual information in the train-
ing for the following reasons. First, the dimensionality is too high, and
second, the color of single pixels may alter drastically even for small changes
in the robot’s location. If each pixel value would represent a single dimen-
sion, the jumps in sensorimotor space would be too large for any function
approximation. Therefore, the image was preprocessed to detect only a spe-
cial class of objects and extract only a visual distance information in a few
sectors. Image processing contained the following steps:

First, a contrast mechanism enhanced red objects (R− (G+B)/2). The
result was smoothened with a binomial filter. Then, a threshold function was
applied on all pixel values (figure 7.3, right). Within the obtained binary
image, in ten sectors (36◦ each), the distance from the center of the robot
to the closest object was determined (figure 7.3, right). These ten distance
values form the final representation of the sensory input to be processed by
the network (figure 7.4). Such a sensory representation in sector values was
also used by Tani (1996). Different from our model, he used a laser sensor
instead of vision.

The ‘motor commands’ vL and vR together with two corresponding image
representations (as in figure 7.4) from two consecutive recordings (2 sec apart)
make one training pattern. Each pattern is therefore a 22-dimensional vector.
Before network training, the set of training patterns was normalized to have
zero mean and unit variance in each dimension. The resulting normalization
constants were also applied to the test set and the robot experiments.

7.2. METHODS 123

Figure 7.3: (Left) Image as seen through the mirror. (Right) Distance information
in ten sectors derived from the image on the left.

55

60

65

70

75

80

0 1 2 3 4 5 6 7 8 9

di
st

an
ce

 in
 p

ix
el

s

sector

Figure 7.4: Visual distance in ten sectors for the situation in figure 7.3.

7.2.4 Forward model: Multi-layer perceptron

All tasks in this chapter depend on a forward model. It gets as input the
sensory information (figure 7.4) of one time step and the motor command
consisting of the velocities vL and vR, and it predicts the sensory information

124 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

of the next time step. Training data were collected as described in section
7.2.2.

To anticipate future sensory information beyond the 2 sec prediction hori-
zon of a single forward model, we feed the sensory output back into the
sensory input (figure 7.5). This feedback completely overwrites the previous
input. At each time step t, the corresponding motor command Mt (here,
velocity combinations) of the sequence is fed into the network. Thus, for
illustration it seems more intuitive to replace the feedback by a chain of
identical forward models (figure 7.6).

M

SS

t

t t+1

D

D

Figure 7.5: Forward model with feedback loop. The model maps the sensory
information St onto St+1 in the context of the motor command Mt. The boxes
labeled D delay the feedback by one time step.

S S

M MM1 3

30

2

Figure 7.6: Concatenated chain of forward models. The sensory output of link t
is the sensory input of link t+ 1.

First, as a forward model, an MLP with one hidden layer was used. The
network’s activation functions were the identity on input and output layer,
and the sigmoidal function in the hidden layer. The MLP had 12 input
neurons (two velocity values and the ten sector values) and ten output neu-
rons (ten sector values). The hidden layer comprises 15 hidden units. This

7.2. METHODS 125

number seemed to be a good compromise between recall speed and accu-
racy. Higher numbers did not improve the performance noticeably. The
weights were initialized with random values drawn uniformly from the inter-
val [−0.5; 0.5]. The network was trained on 5466 patterns with 3000 epochs
of resilient propagation (RPROP) (Riedmiller and Braun, 1993). The per-
formance of the MLP is shown in section 7.3.1.

7.2.5 Forward model: Abstract recurrent neural network

The abstract RNN was used as an alternative to the MLP. Tests were carried
out on two data sets, called ‘standard’ and ‘change’. The first is the same as
for the MLP. In the second set, the predicted sensory state St+1 is replaced
by the relative change ∆St = St+1 − St. Thus, the network output needs to
be added to the current sensory state to obtain the predicted state.

For the training, MPPCA-ext, NGPCA, and NGPCA-constV were used
(chapter 3). The number of units was 50. NGPCA and NGPCA-constV had
the same training parameters as in chapter 4, namely ρ(0) = 10.0, ρ(tmax) =
0.0001, ε(0) = 0.5, ε(tmax) = 0.001, and tmax = 400 000.

To get an estimate of the number q of principal components needed for
each training set, the local dimensionality of the pattern distribution was
computed. This was done as in section 4.5. The peak in the ratio of successive
averaged eigenvalues—from a local PCA within the neighborhood of each
training pattern—was determined. Here, the number of neighbors differed
from the one given in section 4.5. This number needs to be sufficiently large
to point out the underlying dimensionality (figure 7.7, left). For the standard
set, the peak in the eigenvalue ratio is at four (figure 7.7, left). As expected,
the robot’s location (distance from the circle center), its orientation, and the
two velocities make four degrees of freedom. For the change set, however,
this peak was at 13 (figure 7.7, right). Here, the explanation is that the
noise-to-signal ratio is higher; the noise in ∆St equals about the noise in St,
but the magnitude of ∆St is about ten-times smaller than the magnitude of
St. The additional variance increases the local dimensionality.

The mixture models were tested with q = 5 for the standard set and with
q = 14 for the change set. As in section 6.2.5, one principal component was
added to take care of the curvature of the distribution. This improved the
performance.

As shown in chapter 4, the abstract RNN can associate patterns in any
direction; the MLP is restricted to the trained direction. To demonstrate this
advantage of the RNN, another experiment used the same trained RNN as
an inverse model. Here, two successive states St and St+1 are mapped onto
the motor command Mt. The performance of the abstract RNN is shown in
section 7.3.2.

126 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

1 2 3 4 5 6 7 8 9 10

k=100
k=50
k=30

λ
λ

q
q

dimension q

+1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

0 2 4 6 8 10 12 14 16 18 20

k=100
k=50
k=30

λ
λ

q
q

dimension q

+1

Figure 7.7: Ratio of successive averaged eigenvalues λq and λq+1. For different
numbers k of neighbors, results are shown for the standard training set (left) and
the change set (right).

7.2.6 Performance outside the training domain

Both the abstract RNN and the MLP were only trained on data points whose
sensory components were restricted to a two-dimensional manifold. The free
parameters are the robot’s distance to the center of the circle and the robot’s
orientation. Since it is not clear how a network reacts to points slightly
outside its training domain, we have a look at the effect of a small change in
the input of the forward model.

Let f(s) be the transformation the network does on the sensory input. To
each sensory input s from the test set, in ten trials, a divergence e was added.
This divergence was distributed randomly and extended uniformly into the
ten-dimensional sensory subspace. The magnitude of e ranged between 0.0
and 1.0 pixels. The computation of f(s) also requires a pair of velocities; in
each trial, they were chosen randomly from the interval [-60; 60]. The results
are in section 7.3.3.

7.2.7 Anticipation performance

To test the anticipation performance, a separate set was used (section 7.2.2).
The reason is that a theoretical prediction of the dependence of the anticipa-
tion error on the chain length relies on randomly independent errors for each
prediction step (appendix C.3). Randomly independent errors are unlikely
for series with a constant motor command. Therefore, the test patterns were
collected during random walks.

However, the slight dependence of velocities, as mentioned in section 7.2.2,
results in a deviation from a pure random walk. As the dashed curve in
figure 7.8 indicates, the square distance (in the sensory representation) to

7.2. METHODS 127

the starting point of a sequence increases stronger than linear, which would
be the expectation for a random walk (appendix C.3). In addition, the
limited movement range within the circle of obstacles reduced the increase
of the square distance for longer sequences. Still, for intermediate sequence
lengths, the increase is roughly linear (figure 7.8, solid line). Therefore, for
the comparison with the theory, and to compute the average linear increase
of the square error, only the prediction intervals 2 to 6 were evaluated.

-10

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7

S
E

 /
se

ct
or

l

Figure 7.8: Increase of the mean squared distance per image sector (in pixels
squared) from the sensory representation after interval l to the representation at
the starting point of a sequence. The dashed curve is a quadratic function fitted to
the intervals zero to five. The solid line shows the almost linear increase between
interval one and six.

The square error E2 of the anticipation was evaluated after each chain
link l. The error E2 is the squared difference between the output o of a chain
with l links and the real sensory information r after l 2 sec intervals,

E2 =

10
∑

i=1

(oi − ri)
2 . (7.1)

7.2.8 Goal-directed movements

The task in the planning of goal-directed movements is to find a series of
motor commands such that the final sensory information matches the desired
value. Here, this problem is treated as an optimization task. The function
to be optimized is the square error between anticipated and desired goal.

128 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

In our experiments, the goal state was not the complete sensory informa-
tion, as in (7.1), but only the value gi in a predefined sector i. Thus, the cost
function is E2 = (oi − gi)

2, with oi equal to the predicted output in sector i.
First, we assume that we know the appropriate number of chain links. The
free parameters are the velocities vL and vR for each time step (link in the
chain).

Two different optimization methods were applied, simulated annealing
and Powell’s method from the ‘Numerical Recipes’ (Press et al., 1993). The
first is more suited to find a global minimum, whereas the second might be
caught in a local minimum.

Simulated annealing is a stochastic method for minimum search, occasion-
ally allowing jumps to higher values of the cost function. The probability
of these jumps is given by the Boltzmann distribution. The temperature
parameter of this distribution is slowly reduced during the simulation, ac-
cording to an annealing scheme. In the present study, a variant (Carter Jr.,
1994) of the ‘Fast Simulated Annealing’ (Szu and Hartley, 1987) was used.
This variant starts with increasing the temperature up to a point at which a
large jump to a higher value in the cost function occurs, and then decreases
the temperature. The default parameters from Carter Jr. (1994) were used,
except for the learning rate, which was set to 0.1, and the number of random
steps at each temperature value, which was set to 20 times the number of
free parameters. Random numbers were generated using the algorithm ‘ran1’
from the Numerical Recipes (Press et al., 1993).

Powell’s method is based on conjugate directions, but does not need the
evaluation of a gradient. Here, the parameters were taken from the Numerical
Recipes (Press et al., 1993). The fractional tolerance of the cost function
was set to 10−4. Both optimization methods were initialized by setting all
velocities to zero.

The treatment of the goal-directed movement as an optimization problem
allows us to add penalty terms to the square error to restrict the possible
range of solutions. The choice of velocities beyond the range ±60 mm/sec,
used for training, was prohibited by punishing velocities outside this range
with an additional term in the cost function (+10 000 pixels squared). This
term was necessary because otherwise, for goals out of the reach of one inter-
val, the optimization could result in large velocities for which no examples
were available in the training set (for these velocities, the extrapolation of
sensory predictions found by the network may be incorrect). To avoid colli-
sions, a penalty term (+100 pixels squared) was added to velocity series that
result in robot positions too close to an obstacle.

So far, we have assumed that the number of chain links is given; however,
the number of time steps required to achieve a goal is not known beforehand.
Therefore, we start with one link and increase the number of links in the

7.2. METHODS 129

optimization process. For each number of links, we solve the optimization
and test if the resulting state matches the desired state (within 0.5 pixels—
the resolution limit). If this criterion is not yet met, the number of links is
increased by one and the optimization restarts from zero velocities. This is
repeated until the criterion is met.

To test the goal-directed movements quantitatively, a random series of
goals was chosen. A trial consisted of choosing a goal and executing the
resulting movement. The goal sector was chosen among the ten sectors, and
its value was chosen from the interval [50, 65]. With the given shape of the
robot and the arrangement of the obstacles, it was physically possible for each
sector to attain these values. At the beginning of each trial, an image was
taken, which was used as the starting point of the anticipation. At the end of
a trial, another image was taken for comparison with the desired goal. In the
next trial, the robot started from where it ended in the previous movement
sequence. The robot did two blocks of 50 trials. At the beginning of each
block the robot was placed in the middle of the circle. This was done to
increase the variety of movements, because at the end of a block, the robot
happened to spend most of its time near the obstacles. The results are in
section 7.3.4.

7.2.9 Mental transformation

Two mental transformations were carried out: a simulated rotation around
the robots axis, and a simulated translation toward the barrier of obstacles.
In the first, the robot has to estimate whether it is standing in the center
of the circle. In the second, the robot has to estimate the distance to the
obstacle in front.

In figure 7.3, the robot is roughly in the middle of the circle, but apparently
this cannot be decided from the image representation (figure 7.4). The reason
for this asymmetry is that the center of the robot differs from the optical axis
of the camera. However, the location can be estimated by simulating a turn
around the rotational axis of the robot and by predicting the distance in the
frontal sector.

After observing the current image, the robot simulated a left and a right
turn (around its rotational axis, i.e., vL = −vR), and anticipated the effect
of these movements on the image representation. From the current position
the robot simulated five rotational steps (2 sec each) to the left with the
velocity vL = −40 mm/sec and vR = 40 mm/sec, and, also from the current
position, five steps to the right at the opposite velocity. Five steps at this
speed corresponded to a rotation of 72◦. Since the obstacles were standing in
a circle, it was not necessary to cover the entire 360◦ in the mental simulation.
Then, the values of the frontal sector for the different representations were

130 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

compared (altogether 11 values). If they had a variance of less than one
pixel squared it was concluded that they were the same, and thus the robot
centered in the circle (which is the only point having same distance to the
circle boundary in all directions). 20 trials were evaluated, with the robot
placed at 20 arbitrary positions (in the vicinity of the center) with random
orientation.

In the second task, the robot simulated a forward movement at speed
v = 40 mm/sec. The frontal sector value was predicted. If it dropped below
a threshold, the simulation stopped. The threshold was chosen such that the
bottom part of the obstacle was still just visible and not occluded by the
robot body. The robot was placed at 15 arbitrary positions on a line through
the center of the circle. The distance between the forefront of the robot and
the forefront of the obstacle in front was measured. The results of these two
tasks are in section 7.3.5.

7.3 Results

First, on the test data, this section shows the anticipation performance for the
MLP and for the abstract RNN and an analysis of predictions from outside
the training domain. Second, on the robot, the MLP chain is applied to
goal-directed action-selection and mental transformation.

7.3.1 Anticipation with the multi-layer perceptron

For the multi-layer perceptron, the average error on the 138 test pattern series
is shown in figure 7.9. The mean square error was below 2.4 pixels squared
for all tested chain lengths. Starting from the second to the sixth step the
square error per sector increases linearly. This linear increase matches the
theoretical prediction (appendix C.3).

7.3.2 Anticipation with the abstract recurrent neural network

For the abstract recurrent neural network, the error increase over time was
worse than for the MLP (table 7.1 and 7.2). On the standard training set,
MPPCA-ext was better than NGPCA and NGPCA-constV for the antic-
ipated q value of 5 (table 7.1). With a larger q value, however, the per-
formance of NGPCA and NGPCA-constV increased, while it decreased for
MPPCA-ext.

On the change set, NGPCA-constV did better than the other two methods
(table 7.2). Here, the distributions of assigned patterns (respective prior
probabilities) differed clearly (figure 7.10). In the NGPCA-constV case, the

7.3. RESULTS 131

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

1 2 3 4 5 6 7

S
E

 /
se

ct
or

l

Figure 7.9: Anticipation performance of the MLP on the 138 test series. The
mean square error (in pixels squared) per sector is shown as a function of the
number l of chain links. A line is fitted to the points from link number two to six.

distribution is confined to a smaller range of numbers compared to the two
other cases. Moreover, NGPCA results in 13 units with only a few assigned
patterns (less than 30). The test with the change set further shows that more
principal components were needed than in the standard case to achieve an
almost equal performance (table 7.2).

0

2

4

6

8

10

12

14

0 50 100 150 200 250

NGPCA
NGPCA-constV

0

2

4

6

8

10

12

14

0 0.01 0.02 0.03 0.04 0.05

MPPCA-ext

n

number of assigned patterns prior probability

n

Figure 7.10: Histogram of assigned patterns, respective prior probabilities. n
is the number of units for each interval. Here, the change set and 14 principal
components were used.

132 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

The abstract RNN can also learn the inverse direction from two successive
sensory states to the two wheel velocities (table 7.1 and 7.2). However, the
error is too high for robot control. The square root of the square error is
around 20% of the total velocity range. This error is actually so large that
the prediction of motor commands can only be used to determine if the
robot goes forward or backward, or turns left or right, as a function of the
alternating camera image.

method q 1-step error error increase inv. dir. error
(pixel2) (pixel2) (mm/sec)

MPPCA-ext 5 1.8 0.30 27
NGPCA 5 1.7 0.46 25
NGPCA-constV 5 1.8 0.52 27
MPPCA-ext 7 1.8 0.39 25
NGPCA 7 1.7 0.30 24
NGPCA-constV 7 1.7 0.30 24
MLP - 1.5 0.13 -

Table 7.1: Anticipation performance (on the 138 test series) of the abstract RNN
trained on the standard set. The results for the multi-layer perceptron are shown
for comparison. q is the number of principal components. The 1-step error is the
average square error per sector for the first predicted interval. The error increase
is the average square error increase per sector and interval between the second
and the sixth interval (obtained by a linear fit as in figure 7.9). For the inverse
direction, the last column shows the square-root of the average square error of the
predicted velocity.

method q 1-step error error increase inv. dir. error
(pixel2) (pixel2) (mm/sec)

MPPCA-ext 14 1.8 0.46 23
NGPCA 14 2.0 0.81 22
NGPCA-constV 14 1.6 0.28 23
MPPCA-ext 7 1.9 0.51 24
NGPCA 7 1.9 0.77 24
NGPCA-constV 7 1.8 0.45 24
MLP - 1.4 0.20 -

Table 7.2: Anticipation performance (on the 138 test series) of the abstract RNN
trained on the change set. The results for the multi-layer perceptron are shown for
comparison. See table 7.1 for further explanation.

7.3. RESULTS 133

The main difference in the performance between the abstract RNN and the
MLP is the difference in the linear square error increase. The best obtained
value for the abstract RNN of 0.28 pixels squared per interval (table 7.2)
is more than double than the best MLP value of 0.13 pixels squared (table
7.1). Furthermore, compared to the MLP, the abstract RNN was not only
less accurate in the forward prediction, but also slower. On an Athlon 2200+
with 1GB RAM, a single mapping with the abstract RNN took 1.3 ms and
with the MLP 0.016 ms (both algorithms were implemented in C++). Thus,
for the applications of the chain, only the MLP was used.

7.3.3 Performance outside the training domain

For both abstract RNN and MLP, in contrast to the prediction (appendix
C.3), the error increase per interval was smaller than the error for one pre-
dicted step. To investigate the cause, we first study how the forward models
perform on points outside the training domain.

Figure 7.11 shows the change of the forward-model output, f(s+e)− f(s),
as a result of a small divergence e from a given sensory input from the test set.
In the MLP case, the major part of the change in the output is concentrated
around a line with slope 0.5. Thus, sensory states outside the training domain
were mapped back, closer to the domain. In the abstract RNN case, this also
holds for most of the test points. However, some points were mapped further
away from the domain (top part in figure 7.11, right).

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

e

f
(s

 +
 e

)
-

f
(s

)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

e

f
(s

 +
 e

)
-

f
(s

)

Figure 7.11: Response of the forward mapping f(s) to small deviations e from
a test pattern input s, for the MLP (left) and for the abstract RNN (right). All
values are in pixels. The abstract RNN was trained on the standard set with
MPPCA-ext and q = 5. The right diagram is typical for all tested mixture models.

The sensory input from the training and test data is restricted to a two-
dimensional manifold. Thus, a single prediction steps starts from this mani-

134 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

fold, and its error can extend into all ten directions. In a sequence, however,
the sensory input for some steps has left the manifold. In these cases, as
shown in the experiment, the sensory state is mapped back toward the mani-
fold. Therefore, the directions the error can go are restricted to the directions
within the manifold. Thus, different from the assumption in appendix C.3,
the sequence of errors did a random walk in two dimensions instead of ten.
This led to more error compensations and thus to a slower error increase.

To test this argument further, the square error between successive pre-
diction steps was compared. In accordance with the argument, the observed
percentage of error compensations was 45% for the MLP and around 40%
for the abstract RNN (this percentage is higher than for a random walk in
ten dimensions).

7.3.4 Goal-directed movements

The goal for the robot is to move in a way that the sensory value in a single
given sector reaches a given value. Figure 7.12 illustrates the result of two
typical movements. In example A, the goal was to make the sector in the
back right (number 4 in figure 7.3, right) attain a low value (for example,
50 pixels). The robot moved backward in a rightward curve. In example B,
the front sector should attain a low value. Thus, the robot moved from the
middle of the circle straight toward the obstacles.

BA

Figure 7.12: Typical goal-directed movements. The goal was to be close to an
obstacle (A) in the back right sector (number 4 in figure 7.3) or (B) in the front
sector (number 0 in figure 7.3).

The two optimization methods gave similar results (table 7.3). In almost
all trials, both optimization methods found a solution (96% to 99%). In

7.3. RESULTS 135

15% to 18% of the trials, the final sector value matched exactly the desired
value, and in almost half of the trials, the final value was within one pixel
of the desired value. In more than 80% of the trials, the final sector value
was closer to the desired than to the initial value, and in more than 90% of
trials, the final sector value was changed in the right direction (increasing or
decreasing).

sim. anneal. Powell

found solution 99% 96%
exact hits 18% 15%
close within one pixel 41% 46%
closer to goal 85% 83%
right direction 91% 91%
mean square error/link 4.4 2.6
mean number of links 2.8 2.5

Table 7.3: Result of 100 goal-directed movements for simulated annealing and
Powell’s method.

The almost equal performance of the Simulated Annealing and the Pow-
ell’s method did not depend on choosing just one goal sector. No noticeable
difference was also observed when two and three defined goal sectors were
defined (data not shown).

7.3.5 Mental transformation

Using mental transformation, the robot could determine whether it was
standing in the middle of the circle (figure 7.13), and it could determine
the distance to the obstacle in front (figure 7.14).

On the first test, figure 7.13 shows which locations were classified as being
in the center and which not. Among the positions that were classified as
center, the maximum distance to the center was 10 cm.

On the second test, the number of predicted steps toward the obstacles
scaled with the real distance (figure 7.14). A line was fitted to the data. In
all trials, the deviation from the line was less then one step. From the slope
of the line the speed of the simulated movement can be estimated. The slope
is 6.6±0.2 cm/step and corresponds to a speed of 33±1 mm/sec (the actual
speed for the given velocity command was 33.5 mm/sec: 40mm/sec divided
by a conversion factor for the wheels).

136 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

Figure 7.13: Performance based on mental transformation for detecting the center
of the circle. Markers indicate the position of the robot’s rotational axis and the
direction the robot was facing. Markers surrounded by a circle represent trials in
which the position was classified as center.

0

2

4

6

8

10

12

14

20 30 40 50 60 70 80 90 100

n

real distance [cm]

Figure 7.14: The number n of predicted steps toward an obstacle against the real
distance to the obstacle. A line is fitted to the data.

7.4. DATA OUTSIDE THE TRAINING DOMAIN 137

7.4 Data outside the training domain

This section explains why a multi-layer perceptron that is trained to map
data points within a sensory manifold, may map data points outside its
training domain closer to the manifold (section 7.3.2, figure 7.11, left). This
phenomenon depends on the structure of the training domain. It is not a
general property of MLPs.

First, I show that all image vectors have about the same length, indepen-
dent of the position of the robot. Second, I give a two-dimensional synthetic
example having the same property. Third, I explain theoretically why in the
example data points outside the training domain are mapped closer to the
domain. Last, I show that the abstract RNN does not have this property in
the example.

We estimate the length of an image vector s (the sensory representation).
Although the world-to-camera mapping was non-linear, the image of the
obstacle circle was still close to circular (figure 7.3). Its area was further
almost independent of the robot’s position. Thus, we assume that also on
the camera image, the obstacles form a circle with fixed area. Within this
region, the robot can stay at any point. To obtain the sensory representation,
the circle is subdivided into ten sectors centered at the robot’s position (figure
7.15).

α α
A

i

i

s

Figure 7.15: All sectors have the same angle α (left). A sector has a length si

and an area Ai (right).

Let si be the length of each sector, and α be the angle of every sector (fig-
ure 7.15). If α is small enough then the area of a sector is well approximated
by

Ai =
1

2
αs2

i . (7.2)

138 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

Therefore, the squared length of an image vector s equals

||s||2 =
∑

i

s2
i =

∑

i

2

α
Ai ≈

2

α
A◦ . (7.3)

A◦ is the circle area enclosed by the obstacles. A◦ is independent of the
position of the robot. Therefore, all training patterns lie on a 10-sphere
(embedded in ten dimensions) with radius

√

2A◦/α.
In the synthetic example discussed in the following, a circle is mapped

onto a circle; that is, input and output are two-dimensional, and the training
domain is a circle in the input and in the output space. The two circles
would coincide if input and output coordinate system were put on top of
each other. Each point si in the input circle has in the second circle a
target point gi that is rotated relative to si by 23◦ around the origin. 200
training points uniformly distributed around the circle were generated. An
MLP learned the mapping from si to gi for all i = 1, . . . , 200. The MLP
had a three layer structure composed of two input neurons, h = 5 hidden
neurons, and two output neurons. In the hidden layer, the activation function
was sigmoidal (tanh), and in the other layers, it was the identity function.
Initially, the weights were drawn uniformly from the interval [-0.1; 0.1]. Using
back-propagation in on-line mode, the network trained until convergence.

Figure 7.16 shows the result after training. Points outside the training
domain (distance to the origin: 2.0) were mapped closer to the origin in the
output space (distance around 1.5), and points inside the training domain
(distance: 0.66) were mapped closer the unit circle (distance around 0.75).

Figure 7.16: Circle-to-circle mapping with 23◦ rotation. Input space (left) and
output space (right) are shown. Training data are on a circle with radius 1. Square
markers show test input (left) and corresponding output (right).

7.4. DATA OUTSIDE THE TRAINING DOMAIN 139

In the following, this finding is studied theoretically. The MLP maps an
input s to an output o,

oi =

h
∑

j=1

vij tanh

(

2
∑

k=1

ujksk

)

, (7.4)

with h hidden units and weight matrices U and V. If the activation function
in the hidden layer would be the identity function then the output scales as
the input. Multiplying the input by a scalar β gives

VU βs = βVUs . (7.5)

Here, outliers are not mapped closer to the circle. Thus, the observed con-
traction is caused by the sigmoidal activation function.

In the example with the two-dimensional circle, it was observed that in the
trained network, the column vectors uk of U were approximately orthogonal
and had unit length; the same held for the row vectors2 vk of V. Thus, we
assume that uTkul = δkl and vTk vl = δkl. With this assumption, it can be
shown (appendix C.4) that points s outside the circle are mapped closer to
the circle,

‖o‖ < ‖s‖ . (7.6)

The theoretical explanation can be also extended to arbitrary dimensions
with a hyper-sphere instead of a circle. In our robot task, however, the
training patterns cannot cover all of the hyper-sphere because they are re-
stricted to a two-dimensional manifold; in the synthetic example the whole
circle is covered. This weakens the comparison.

The assumption uTkul = δkl further predicts that the contraction effect
decreases with increasing number of neurons h in the hidden layer. The

assumption infers that
∑h

j=1 u
2
jk = 1. Thus, the expectation value of u2

jk

equals 1/h. The argument of tanh is
∑

k ujksk. Here, the only random
variables are {ujk}, since the statement should hold for all s. Further, we
assume that the expectation value of ujk is zero. Then, for all inputs s with
length β, the expectation value of the squared tanh-argument can be written
as

2This is different for auto-associative networks with bottleneck hidden layer. For them,
it can be shown that the column vectors of V tend to the principal components of the
distribution {oi} (Diamantaras and Kung, 1996). Thus, for bottleneck networks, the
column vectors are orthogonal.

140 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

〈(

2
∑

k=1

ujksk

)2〉

=

2
∑

k=1

〈

u2
jk

〉

s2
k =

β2

h
. (7.7)

The absolute mean value of the tanh-argument decreases with increasing h.
Therefore, the tanh-function gets closer to the identity function, and the
contraction effect weakens.

This finding was tested with the above experiment for different values of
h. The result is shown in table 7.4. The values were averaged over three
separately trained networks and on 360 trials each. The length of input
vectors was set to 2.0. This experiment is in agreement with the above
theoretical prediction.

hidden neurons c

5 0.78
10 0.85
15 0.89
20 0.91
25 0.92

Table 7.4: Dependence of the mean contraction c = 〈‖o‖〉 / ||s|| on the number
of hidden neurons.

Different from the MLP, the abstract RNN maintains the scale in the circle
task (figure 7.17). The 200 pairs of circle points (si,gi) were approximated
using a mixture of five units, each with two principal components (using for
training MPPCA-ext). The centers of the ellipsoids turned out to be evenly
distributed around the circle. Figure 7.17 shows that the distance to the
origin is consistent between input and output pairs. As in (7.5), the local
linear mappings do not change the length of input patterns.

7.5 Discussion

A chain of forward models could be applied to the planning of goal-directed
movements and to mental transformation. The robot used the simulation
of action sequences to perceive (to understand) its location within a circle
of obstacles and to perceive the relative distance to obstacles. The forward
model was acquired by random exploration. No teacher was necessary.

Tani (1996), Tani and Nolfi (1999), and Jirenhed et al. (2001) used also
a chain of forward models for prediction. Different from our approach, they
used Elman networks, which have a context layer (section 1.5.4). Such an

7.5. DISCUSSION 141

Figure 7.17: Circle-to-circle mapping with 23◦ rotation, using the abstract RNN.
Input space (left) and output space (right) are shown. Training data are on a
circle with radius 1. Square markers show test input (left) and corresponding
output (right).

approach also allows goal-directed movements by optimizing the motor com-
mands (Tani, 1996). However, the simulation of covert action is not possible
because the robot needs to move to initialize its context layer (Tani, 1996).
Therefore, in the presented study, context layers were omitted.

The forward model was trained either with a multi-layer perceptron or
with an abstract recurrent neural network based on a mixture of local PCA.
On the anticipation, the MLP was more accurate and 100-times faster than
the abstract RNN. The MLP also had fewer free parameters: 355 free pa-
rameters for 12 input, 15 hidden, and ten output neurons against 6150 free
parameters for a mixture model with 50 units and five principal components.
Thus, the MLP was the favorable choice for the goal-directed movements and
the mental transformation tasks.

On the standard training set, using a few principal components (q =
5), MPPCA-ext was better than NGPCA and NGPCA-constV. With the
addition of two more components, however, MPPCA-ext got worse than
the NGPCA variants. It was also worse than NGPCA-constV on a second
training set (‘change set’) using seven or more principal components. An
explanation for this apparent weakness for large q might be the following:
a higher q leads to a smaller residual variance. Thus, the width of a local
Gaussian probability density in the direction of the minor components is
smaller. The stronger descent of this density in these directions leads to a
likelihood (which is the product of the probabilities of all data points) that
is more sensitive to the positions of single data points. Thus, MPPCA-ext is
less robust since it maximizes this likelihood.

142 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

The introduction of the change set did not bring a noticeable difference
to the maximal performance of the abstract RNN. However, it served to
demonstrate that a higher noise-to-signal ratio for some of the components
of a training pattern can be counterbalanced by adding more principal com-
ponents in the mixture model (if using NGPCA-constV).

In the change set, the local variation extended into nine additional dimen-
sions. This number possibly arises from two facts. First, the relative change
of an image vector has ten components. Second, the length of an image vec-
tor is almost constant (as shown in section 7.4), which restricts the number
of dimensions the variance can extend to.

NGPCA-constV was better on the change set than NGPCA, because it
did not produce units that have only a few patterns assigned to them. This
matches the observation in chapter 6.

The once trained abstract RNNs could also map in the inverse direction,
that is, from two successive sensory states onto the wheel velocities. Here,
however, the error was high (about 20% of the velocity range). The expla-
nation is possibly the much larger number of input dimensions compared to
output dimensions (20 to 2). Thus, as examined in section 4.6, the expected
error is higher than for the forward direction (which maps from 12 to 10
dimensions).

Goal-directed motion planning requires a search in a high-dimensional
motor space defined by a sequence of movements. Nothing is known about
the structure of the optimization function defined over this space. The fact
that Powell’s method, which is a local minimization method, showed a similar
performance like simulated annealing suggests that the presented task has few
local minima that are not global. Whether other environments have similar
properties is not known.

The square error in the goal-directed movement task was higher than
the one observed in the prediction of random test series (compare table 7.3
with figure 7.9). The explanation is that the robot could not always execute
successfully its given motor commands. The four wheels made the robot
occasionally stick on the floor during slow turns. Such trials were omitted
in the collection of test samples; however, they could not be avoided during
goal-directed movements3.

The low error for the anticipation (below 2.4 pixels squared, see figure 7.9)
allowed a successful application to mental transformation. Here, a series of
covert motor commands was simulated. The temporal characteristic of these
motor commands was the same as for their overt execution; this matches
human-behavioral findings (Jeannerod, 2001).

3An improvement would be a robot using only two driven wheels and caster wheels,
which turns on a floor more easily.

7.5. DISCUSSION 143

The robot could detect the center of the circle of obstacles by simulating
a turn around its rotational axis. The maximum distance of a location,
classified as center, to the real center (10 cm) is low compared to the circle
diameter (180 cm) and to the length of the robot (40 cm). The remaining
inaccuracy might be attributed to prediction errors, and to deviations from
perfect symmetry in the circle of obstacles.

The robot could also estimate the distance to an obstacle by simulat-
ing a straight-forward movement and predicting the first interval in which
the activation in the frontal sector of the image representation was below a
threshold. The number of this interval scaled with the real distance to the
obstacle (figure 7.14). Since over-proportionally many examples were col-
lected for straight-forward movements than for turns, the prediction in this
task was more accurate than on average. A good performance was achieved
for up to 13 prediction steps.

The judgment of relative distances based on sensorimotor integration re-
lates to a psychological experiment by Sun et al. (2003). They showed that
active movement improves visual-based estimation of path lengths. In this
study, subjects rode an exercise bicycle, while wearing a virtual reality head-
set that presented a view along a corridor. Based on visual cues, the subjects
had to estimate the length of the path traveled. The better the match be-
tween exercised movement and virtual movement, the more accurate was the
estimation.

For the MLP and the abstract RNN, we observed that data points out-
side the sensory manifold were mapped back toward the sensory manifold.
As shown in section 7.3.3, the restriction of predicted states to this manifold
possibly explains why the prediction error increased slower than expected.
Compared to the abstract RNN, the MLP was better at this backward map-
ping (figure 7.11 and section 7.4). This might explain why the MLP was
more accurate.

144 CHAPTER 7. FORWARD MODEL FOR A MOBILE ROBOT

Chapter 8

Conclusions

Unsupervised learning methods were developed and applied to sensorimotor
models, which in turn were used to solve perceptual tasks. For each sen-
sorimotor model the following three steps were pursued. First, data were
collected and preprocessed. These data are distributed in a sensorimotor
space, whose dimensions comprise all sensory variables and all motor vari-
ables. Second, this distribution was approximated by a simplified and gen-
eralizing representation. Third, upon this approximation, recall mechanisms
were developed that could complete a partially given input pattern, and
thus allowed the association of patterns. The advantage of the new learning
methods over a multi-layer perceptron and a look-up table was demonstrated.
Finally, it was shown how sensorimotor models can be used as a basis for the
perception of object-shapes and space.

8.1 Data collection and preprocessing

Sensorimotor models were acquired in three setups: a kinematic arm model
(section 4.5), a real robot arm equipped with a camera (chapter 6), and mo-
bile robot also equipped with a camera (chapter 7). The raw data contained
the following:

� For the kinematic arm model, the motor part are six joint angles, and the
sensory part are the three corresponding coordinates of the end-effector
and a collision variable.

� For the real robot arm, the motor part are the six joint angles of an arm
posture suitable to grasp an object, and the sensory part is an image of
the object.

� For the mobile robot, the motor part are the wheel velocities, and the
sensory part are two successive images.

145

146 CHAPTER 8. CONCLUSIONS

Training data were collected during random exploration; that is, the robot
chose random motor commands and observed the sensory consequences of its
actions. This exploration is the actual unsupervised part of the learning.
Whether the following interpretation of this data is called unsupervised is
more a matter of definition (see, for example, Meinicke (2000)).

Different from the kinematic arm model, the studies with the real robots
revealed that it was necessary to preprocess the collected data. The dimen-
sionality of the images was too high. The following three processing strategies
proved to be useful:

� Keep positions (here, of an object or of the mobile robot) that are close
together in Cartesian space also close together within the distribution
of the preprocessed sensory data.

� Leave a residual redundancy in the preprocessed sensorimotor data.
Population codes, as observed in nature, were a good example (chapter
6).

� Separate points in the final sensorimotor space that do not relate to
each other, such as redundant arm posture for the same sensory input.

A processing that extracts lines, rectangles, or the like from an image
was avoided. Including such more complex sensory representations may lead
to the same conceptual problems as discussed for the symbolic approach
(section 1.4.1). These representations depend on the designer’s choice and
may distract from the real difficulties of a behavioral task (Brooks, 1986b;
Möller, 1999).

8.2 Approximation of the data distribution

Two strategies were pursued: either the distribution of sensorimotor data
was approximated by a mixture of ellipsoids (chapter 3), or the distribution’s
mapping into a single higher-dimensional space was approximated by a hyper-
plane (chapter 5). The first was accomplished by a mixture of local principal
component analyzers (PCA). Here, a single PCA operates on a region within
the distribution. For each ellipsoid, the resulting principal components are
the axes’ directions, and the corresponding eigenvalues are the squared axes’
lengths. To obtain the free parameters of the mixture model (the ellipsoids’
centers, axes’ directions and lengths) three new methods were presented:

� NGPCA is an extension of the vector quantizer Neural Gas (Mar-
tinetz et al., 1993) to local PCA (Möller and Hoffmann, 2004). For each
presented data point, not only the centers are updated, but also the

8.2. APPROXIMATION OF THE DATA DISTRIBUTION 147

principal components. Herein, an error measure (the normalized Ma-
halanobis distance plus reconstruction error) regulates the competition
between the units of the mixture (section 3.2.1).

� NGPCA-constV is a variant of NGPCA. Here, the error measure
is replaced by one that removes the dependency on the volume of an
ellipsoid (section 3.2.2).

� MPPCA-ext is an extension of the mixture of probabilistic PCA (Tip-
ping and Bishop, 1999), which is a mixture of Gaussian probability func-
tions that model the density of the data distribution (section 2.3.1). The
algorithm was modified in three parts:

First, Neural Gas was used to initialize the centers. Second, units with
almost zero weight were moved to more dense regions within the distri-
bution. And third, an on-line method for PCA was used, which allows
the addition of noise to each presented data point (section 3.3). The
last two parts made the algorithm usable for the sensorimotor distribu-
tions from the robot experiments. The sparseness of these distributions
would otherwise lead to eigenvalues with zero value (section 6.2.5).

These algorithms were demonstrated to work on synthetic data and on
the classification of hand-written digits (section 3.4). On classification tasks,
however, mixture models are not the most suitable. Here, feed-forward net-
works and support-vector machines (Cortes and Vapnik, 1995) can do better
(LeCun et al., 1998).

On most tasks, the NGPCA variants gave about the same performance
than MPPCA-ext, though some differences were visible. The NGPCA vari-
ants were more sensitive than MPPCA-ext on the training parameters (sec-
tion 3.5 and 6.3). Further, the dependence on these parameters is not un-
derstood.

On the other hand, the NGPCA variants could cope with arbitrarily many
dimensions; MPPCA-ext fails on high-dimensional data (observed for 676
and 784 dimensions, see section 4.4.2 and 3.4). This problem arises from
the Gaussian function, which vanishes for the large distances that the high-
dimensional space provides (section 3.4.2). Thus, probably, this problem can
be also found in other Gaussian mixture models (Tipping and Bishop, 1999;
Albrecht et al., 2000; Meinicke and Ritter, 2001). These studies did not
report tests on such high-dimensional data.

In the robot experiments, NGPCA-constV was observed to be better than
NGPCA (section 6.3 and 7.3.2). This performance difference is possibly
linked to the assignment of the data points among the units. For NGPCA-
constV, this assignment was more balanced. In particular, more training

148 CHAPTER 8. CONCLUSIONS

patterns were assigned to the unit with the fewest patterns (section 6.3 and
7.3.2).

The mixture model parameters, the number of units and the number of
principal components were defined before training. The first was set by
trial and error. Using more units improved the performance until the point
where the number of training patterns per unit was not sufficient for a robust
training (section 4.5.2 and 5.3.2). The number of principal components was
estimated from the local dimensionality of the distribution. This dimension-
ality was accessible experimentally by computing a PCA in the neighborhood
of each data point (section 4.5.2, 6.2.5, and 7.2.5).

In the second strategy, which uses a hyper-plane to approximate the data
distribution, the data were mapped into a higher-dimensional space, a so-
called feature space. The algorithm ‘kernel PCA’ Schölkopf et al. (1998b)
extracted the principal components of the data’s mapping in this feature
space (section 2.4). This algorithm does not require that the mapping is
actually carried out; instead, all computation is done in the original space.
The principal components in feature space spanned the hyper-plane that
approximated the data.

8.3 Pattern association

Based on the two strategies for the approximation of the data distributions
(section 8.2), two pattern-association methods were developed (chapter 4
and 5). In both methods, an input pattern was the offset from zero of a con-
strained subspace within the sensorimotor space. The span of this subspace
was the output space.

In the first method, the constrained space intersected the mixture of el-
lipsoids. This computation could be carried out analytically. The resulting
point yielded in its components the output pattern. In contrast to a gradient
descent in a potential field build on top of the mixture of ellipsoids, the de-
scribed approach does never end in a local minimum and has no additional
parameters.

In the second method, a potential field was constructed. In feature space,
the potential was the squared distance to the hyper-plane that approximated
the data. A kernel function allowed to compute the potential in the original
space. In this space, a gradient descent along the constraint gave the output.

Both methods have two advantages over feed-forward networks: First,
input and output dimensions can be chosen after training. In particular,
for sensorimotor models, the association works in both forward and inverse
direction. Second, the association does not fail if the training set contains re-
dundant output patterns for a single input. The first advantage was demon-

8.4. RESULTS COMPARED TO OTHER METHODS 149

strated on the completion of images (section 4.4.1), on the kinematic arm
model (section 4.5), and by using the sensorimotor model for the mobile robot
as an inverse model (section 7.3.2). The second advantage was demonstrated
on the kinematic arm model (section 4.5) and on the robot arm (chapter 6).
The robot arm could recall a suitable arm posture to grasp an object seen in
the camera, despite the fact that redundant arm postures existed.

These two advantages were also demonstrated in recurrent neural networks
(Steinkühler and Cruse, 1998). Therefore, we called the first method abstract
recurrent neural network. The argument also holds for the second method.
However, to distinguish the two clearly, just one was called abstract RNN.

The recall with the mixture model was more accurate and faster than with
kernel PCA (section 5.3.2 and 6.3). Thus, the emphasis was on the mixture
model. Nevertheless, kernel PCA demonstrated that with increasing dimen-
sionality a data distribution can be better described with a linear model.
This matches two further observations. First, a single PCA did well on the
completion of images, which had more dimensions than the sensorimotor data
in the other tasks (section 4.4). Second, in the robot-arm experiment, the
mixture of local PCA did better on a higher-dimensional training set, which
comprised population coded variables (chapter 6).

8.4 Results compared to other methods

The abstract RNN was compared to a multi-layer perceptron (MLP) and to
a look-up table. This section further points out differences to the pattern-
association based on self-organizing maps (SOM) (Ritter et al., 1990) and to
the pattern-association based on parametrized self-organizing maps (PSOM)
(Ritter, 1993).

Section 8.3 mentioned some tasks to which the abstract RNN can be ap-
plied but the MLP cannot. In tasks that only require to learn a function from
input to output (many-to-one or one-to-one), the results are less distinct. In
the forward direction of the kinematic arm model, the abstract RNN did
better than the MLP (section 4.5); however, in the mobile-robot experiment,
the MLP did better on the prediction of the sensory input (section 7.3.2).

We observed that the performance of the abstract RNN deteriorated the
more input against output dimensions were chosen (section 4.5.2 and 4.6).
This suggests that for tasks in which the input dimensions outnumber the
output dimensions (for example, by 20 to 2), the MLP should be preferred.

This dependence on the number of input dimensions also holds for a look-
up table that picks the best fit among all training patterns (section 4.6). In
contrast to a look-up table, however, the abstract RNN could interpolate
between patterns and thus resulted in more accurate associations (section

150 CHAPTER 8. CONCLUSIONS

4.4.2 and 6.3). Moreover, with the addition of noise to the training patterns,
the performance of the abstract RNN did not deteriorate as much as in the
look-up-table case (section 6.3).

Compared to the algorithms SOM and PSOM (see section 1.5.5 and 1.5.6),
the abstract RNN has the following advantages:

� SOM: The abstract RNN can cope with distributions of higher local
dimensionality. A single ellipsoid can cover a region for which many
SOM-grid points would be needed (section 3.1).

� SOM: The abstract RNN could cope with redundancy in the target
values (section 4.5 and chapter 6).

� PSOM: The abstract RNN could be applied to data distributions with
unknown topology (for example, images, section 4.4).

� PSOM: The abstract RNN could cope with distributions that are dis-
continuous (section 4.5).

� SOM and PSOM: The abstract RNN could cope with additional noise
dimensions (section 4.5.2).

8.5 Perception

Based on sensorimotor models, the present work showed how visual percep-
tion might emerge:

� The location and orientation of an object within the reach of an arm
could be perceived by simulating an arm posture suitable to grasp the
object. This simulation was demonstrated with the robot arm (chap-
ter 6). The abstract RNN associated an arm posture given an image
representation of the object. The arm posture represented the real loca-
tion and orientation accurately (mean distance between gripper tip and
object: about 7 mm, mean difference in orientation: about 4◦).

� The geometry of the surrounding world, the real distance to obstacles,
could be perceived by ‘mentally’ simulating a movement toward the
obstacles. This simulation was carried out in the mobile robot (chapter
7). The robot predicted the number of 2 sec intervals required to reach
an obstacle in front.

� Symmetry within the world could also be perceived by simulating a
movement. This kind of perception was demonstrated on the example
of a circle (chapter 7). A simulated turn in the center of the circle

8.6. FUTURE DIRECTION 151

predicts an invariant visual input, and this invariance can be observed
only at the center. This way, humans might detect symmetry, despite
having a distorted sensory representation in the visual cortex.

These experiments show that perception of space and shape can be ex-
plained by the sensorimotor approach. Instead of using a pure sensory rep-
resentation, all is reduced to the simulation of motor commands and their
sensory consequences.

In the mobile-robot study, depth perception was based on computing the
time-to-contact; in the robot-arm study, depth perception was based on asso-
ciating an arm posture. This difference implies that for unlike tasks different
spatial representations exist, for example, a far field for locomotion and a
near field for grasping (Mallot et al., 1992).

8.6 Future direction

The present work can be extended in several directions:

� To remove the sensitivity of NGPCA and NGPCA-constV on the pa-
rameters, an automatic adjustment during the training would be helpful.
A further helpful extension would be a growing mixture model that ad-
justs the number of units m and principal components q to the data
distribution. For the Neural Gas vector quantizer, Fritzke (1995) de-
veloped a model that adjusts m. Meinicke and Ritter (2001) extended
MPPCA to adjust q.

� Moreover, for NGPCA, different error measures or different ranking
functions might avoid ‘dead units’ and thin ellipsoids that protrude
out of a distribution (see section 3.3.2, figure 3.8 and the discussion
in section 3.5).

� The recall in the abstract RNN has discontinuities (for more than one
unit). An interpolation between neighboring units might lead to better
results.

� So far, the robot arm did only grasp objects. A possible extension is to
include object manipulation. By mentally simulating such a manipula-
tion, the robot could recognize the object, as in the following example.
Two objects need to be recognized: a cylinder and a brick (as in chapter
6). Both lie on the table. If the robot pushes the cylinder, it will roll;
if the robot pushes the brick, it will move only a short distance. Once
trained, the robot sees an object with its camera. Using simulation, the
robot can predict what would happen to the object if pushed. Based on

152 CHAPTER 8. CONCLUSIONS

the outcome, the robot can decide if it was a cylinder or a brick. If this
experiment also works for different illuminations and different object
orientations, it could show that the sensorimotor approach can explain
object constancy.

� The mobile-robot experiment may be extended to the perception of
dead-ends, as suggested by Möller (1999). Standing in front of a poten-
tial dead-end, the robot simulates the outcome of an obstacle-avoidance
algorithm. If the robot predicts that it will get stuck, it can conclude
that it faces a dead-end. With the same mechanism, dead-ends of dif-
ferent shape and seen from different perspectives could be perceived
(object constancy).

� The abstract RNN could be helpful for other applications. It could
be applied to any pattern-association with locally continuous mappings
between patterns.

Appendix A

Statistical tools

A.1 Bayes’ theorem

The probability p(x, j) of observing both x and j can be written in two ways,

p(x, j) = p(x|j)P (j) = P (j|x)p(x) . (A.1)

p(x) is the probability of x (independent of j), P (j) is the probability of j
(independent of x), p(x|j) is the probability of x under the condition that
j is given, and P (j|x) is the probability of j under the condition that x is
given. Reorganizing (A.1) about P (j|x) gives

P (j|x) = p(x|j)P (j)

p(x)
. (A.2)

This is Bayes’ theorem.

A.2 Maximum likelihood

The maximum likelihood principle is illustrated in an example with a one-
dimensional data distribution {xi}, i = 1, ..., n. We assume that the data
originate from a Gaussian distribution p(x) with parameters σ and µ,

p(x) =
1√
2πσ

exp

(

−(x− µ)2

2σ2

)

. (A.3)

According to the maximum likelihood principle, we will choose the unknown
parameters such that the given data are most likely under the obtained dis-
tribution. The probability L of the given data set is

L(σ, µ) =

n
∏

i=1

p(xi) =

(

1√
2πσ

)n

exp

(

−
∑n

i=1(xi − µ)2

2σ2

)

. (A.4)

153

154 APPENDIX A. STATISTICAL TOOLS

We want to find σ̂ and µ̂ that maximize L. Maximizing L is equivalent to
maximizing logL, which is also called the log-likelihood L,

L(σ, µ) = logL(σ, µ) = −n log σ −
∑

i(xi − µ)2

2σ2
+ const . (A.5)

To find the maximum we compute the derivatives of the log-likelihood L and
set them to zero:

∂L
∂σ

= −n
σ
+

∑

i(xi − µ)2

σ3

!
= 0 , (A.6)

∂L
∂µ

=

∑

i(xi − µ)

σ2

!
= 0 . (A.7)

Thus, we obtain the values of the parameters σ̂ and µ̂:

σ̂2 =

∑

i(xi − µ̂)2

n
, (A.8)

µ̂ =

∑

i xi
n

. (A.9)

The resulting σ̂2 is the variance of the distribution and µ̂ is its center. The
extremum of L is indeed a local maximum, as can be seen by computing the
Hesse matrix of L and evaluating it at the extreme point (σ̂, µ̂):

HL =

∣

∣

∣

∣

∣

∣

∣

∂2L
∂σ2

∂2L
∂σ∂µ

∂2L
∂µ∂σ

∂2L
∂µ2

∣

∣

∣

∣

∣

∣

∣

, (A.10)

∂2L
∂σ2

∣

∣

∣

σ=σ̂, µ=µ̂
=

n

σ̂2
− 3

∑

i(xi − µ̂)2

σ̂4
=

n

σ̂2
− 3nσ̂2

σ̂4
= −2n

σ̂2
, (A.11)

∂2L
∂σ∂µ

∣

∣

∣

σ=σ̂, µ=µ̂
=

∂2L
∂µ∂σ

∣

∣

∣

σ=σ̂, µ=µ̂
= −2

∑

i(xi − µ̂)

σ̂3
= 0 ,

∂2L
∂µ2

∣

∣

∣

σ=σ̂, µ=µ̂
= − n

σ̂2
.

It follows that the Hesse matrix at the extremum is negative definite,

HL|σ=σ̂, µ=µ̂ =

∣

∣

∣

∣

∣

∣

−2n
σ̂2 0

0 − n
σ̂2

∣

∣

∣

∣

∣

∣

. (A.12)

Therefore, the extremum is a local maximum. Moreover, it is also a global
maximum. First, for finite parameters, no other extrema exist because L is a
smooth function. Second, L is positive for finite parameters, but approaches
zero for infinite values. Thus, any maximum must be in the finite range.

A.3. ITERATIVE MEAN 155

A.3 Iterative mean

The mean value of a distribution {xi} can also be computed iteratively if the
values xi are drawn one-by-one. Let 〈x〉t be the average over the first t data
points. We observe that

〈x〉t =
1

t

t
∑

i=1

xi

=
1

t

t−1
∑

i=1

xi +
1

t
xt

=
t− 1

t

1

t− 1

t−1
∑

i=1

xi +
1

t
xt

=
t− 1

t
〈x〉t−1 +

1

t
xt . (A.13)

Thus, the update rule for the temporary mean c(t + 1) = 〈x〉t upon presen-
tation of a value x is

c(t+ 1) = c(t) +
1

t+ 1
(x− c(t)) . (A.14)

This rule is the same as for the center update in vector quantization with a
learning rate that decays as 1/t.

156 APPENDIX A. STATISTICAL TOOLS

Appendix B

Algorithms

B.1 Power method with deflation

The power method is a common method to extract the eigenvector with the
largest eigenvalue (Diamantaras and Kung, 1996). Starting with a random
vector a, the principal eigenvector of a matrix K is computed by iterating:

Ka

‖max(Ka)‖ → a . (B.1)

max(Ka) is the component of the vector Ka with the largest absolute value
(some variants of the power method use ‖a‖ instead). This iteration con-
verges to the largest eigenvector with the eigenvalue λ′ = ‖max(Ka)‖. Fur-
ther eigenvectors are obtained using deflation. After the eigenvector ai (num-
ber i, ordered by the size of the corresponding eigenvalue) is computed, a new
matrix Ki+1 is obtained from the previous one Ki by iterating

Ki+1 = Ki − λ′i
aia

T
i

aTi ai
, (B.2)

where λ′i is the eigenvalue corresponding to ai.

B.2 Kernel PCA speed-up

The computational load for the projection onto a principal component is
high, n evaluations of k(z,xi). In the context of support vector machines,
Burges (1996) introduced a speed-up usable for the extraction of the principal
components (Schölkopf et al. (1998b) suggested that this could be also used
for kernel PCA). The idea is to approximate each vector w =

∑n
i=1 αiϕ(xi)

by another vector w′ using only a small set of vectors yi from the original
space, instead of the whole set {xi},

157

158 APPENDIX B. ALGORITHMS

w′ =

m
∑

i=1

βiϕ(yi) . (B.3)

m is set a priori to a value much smaller than n. The set {(yi, βi) | i =
1, . . . ,m} is called reduced set (Burges, 1996).

Here, instead of minimizing ||w−w′||2 to determine the reduced set, we use
a method introduced by Schölkopf et al. (1998a). It is computationally ex-
pensive to optimize over the whole reduced set simultaneously; thus instead,
an iterative method extracts the yi one by one. Moreover, the optimization
over yi and βi is split.

First, starting with y1, we minimize the distance between w and its pro-
jection onto the span of ϕ(y1),

min
y1

(

∥

∥

∥

∥

wTϕ(y1)

ϕ(y1)Tϕ(y1)
ϕ(y1)−w

∥

∥

∥

∥

2
)

. (B.4)

Minimizing this distance is equivalent to maximizing

(

wTϕ(y1)
)2

ϕ(y1)Tϕ(y1)
=

(
∑n

i=1 αik(xi,y1)
)2

k(y1,y1)
. (B.5)

This optimization problem is much less demanding than the before men-
tioned, the dimensionality is the one of the pattern space. The denominator
is constant for radial basis function kernels. Here, only the numerator needs
to be maximized.

After y1 is determined, the optimal β1 is computed. Generally, if the val-
ues yi are known, the corresponding optimal βi can be obtained analytically
by setting the derivatives ∂

∂βi
||w −w′||2 zero (Schölkopf et al., 1998a). The

result is

β = (Ky)−1Kyxα . (B.6)

Ky is the matrix k(yi,yj), and Kyx the matrix k(yi,xj).
β1ϕ(y1) alone is not enough to replace w. Therefore, the second point

y2 is chosen such that the remaining vector w − β1ϕ(y1) is approximated
by β2ϕ(y2). This leads to an iterative scheme, with wt+1 = wt − βtϕ(yt),
starting with w1 = w. At each step, wt is approximated by βtϕ(yt). That is,
yt is obtained by maximizing (B.5), and then, {βi | i = 1, . . . , t} are calculated
using (B.6). Every iteration step, every addition of a set (yt, βt), reduces the
distance to the vector w. In this way, the complete reduced set can be
obtained.

B.3. QUALITY MEASURE FOR A POTENTIAL FIELD 159

In kernel PCA, more than one vector needs to be approximated. To do
this, the above method can be generalized (Schölkopf et al., 1998a). Instead
of (B.4), the sum of the square projection distances is minimized,

min
yt





q
∑

l=0

∥

∥

∥

∥

∥

wl Tϕ(yt)

ϕ(yt)Tϕ(yt)
ϕ(yt)−wl

∥

∥

∥

∥

∥

2


 . (B.7)

Here, w0 is the center vector 1
n

∑n
i=1ϕ(xi); and w

l, with l = 1, . . . , q, are the

q eigenvectors
∑n

i=1 α
l
iϕ(xi). The iteration is the same as above, wl

t+1 = wl
t−

βltϕ(yt). The β
l
i are computed for each vector separately, β l = (Ky)−1Kyxαl.

However, each approximated vector is based on the same set {yi}.
The result of this reduced set method is that all vectors that are expressed

as a sum over n kernel functions, can be obtained as a sum over onlym kernel
functions. Thus, the speed gain is n/m.

B.3 Quality measure for a potential field

In this section a method is introduced that determines the quality of the
match between a potential field and a data distribution {xi}. The overlap
is computed between the data distribution and a region of same volume
enclosed by an iso-potential curve (figure B.1). The method relies on the
data points being uniformly distributed over a closed region G with volume
A (as it is the case for the ring-line-square and vortex distributions).

data distributioniso-potential curve

Figure B.1: Illustration of an iso-potential curve surrounding a region of same
volume as the data distribution.

Let Bc be the volume of the closed region defined by {x | p(x) ≤ c}, which
is the set of points surrounded by an iso-potential curve with value c. The
volume Bc was calculated using Monte-Carlo integration.

160 APPENDIX B. ALGORITHMS

The computation of the quality measure has two steps. First, choose c,
such that Bc = A. Second, count the number of data points xi fulfilling
p(xi) ≤ c. The quality measure is the percentage of this number on the total
number of data points.

Appendix C

Proofs

C.1 Probabilistic PCA and error measures

In probabilistic principal component analysis, the observed d-dimensional
data {xi} are assumed to origin from a probability density p(x). This density
can be written as

p(x) = (2π)−d/2(detB)−1/2 exp

(

−1

2
(x− c)TB−1(x− c)

)

, (C.1)

with B = σ2Id +UUT (Tipping and Bishop, 1997). Id is the d-dimensional
identity matrix, and σ2 is the noise variance. The d× q matrix U is obtained
by maximizing the likelihood of the data {xi} given the probability p(x).
Tipping and Bishop (1999) showed that the result is

U = W(Λ− σ2Iq)
1/2R . (C.2)

The columns of the d × q matrix W are the q principal eigenvectors of the
covariance matrix of {xi}. The q largest eigenvalues λj of the covariance
matrix are the entries of the diagonal matrix Λ. R is an arbitrary q × q
rotational matrix.

In the following, it is shown that the double negative logarithm of (C.1)
equals the normalized Mahalanobis distance plus reconstruction error (sec-
tion 3.2.1) plus a constant. Using (C.2) to rewrite the expression for B gives

B = σ2Id +W(Λ− σ2Iq)W
T = WΛWT + σ2(Id −WWT) . (C.3)

By showing that BB−1 = I and B−1B = I, we can verify that the inverse of
B is

B−1 = WΛ−1WT +
1

σ2
(Id −WWT) . (C.4)

161

162 APPENDIX C. PROOFS

The eigenvalues of B are λ1, ..., λq and σ
2. The latter occurs (d−q)-times.

Thus, the determinant of B is

detB =
(

σ2
)d−q

q
∏

j=1

λj . (C.5)

Finally, we evaluate the logarithm of p(x) using (C.1), (C.4), and (C.5):

ln p(x) = −d
2
ln(2π)− 1

2
E(x− c) (C.6)

with

E(ξ) = ξTWΛ−1WTξ +
1

σ2
(ξTξ − ξTWWTξ) +

∑

j

lnλj + (d− q) lnσ2 ,

(C.7)
and ξ = x− c. E is a normalized Mahalanobis distance plus reconstruction
error.

C.2 The eigenvalue equation in kernel PCA

The equivalence of the equations

nλKα = KKα (C.8)

and

nλα = Kα (C.9)

is shown.
Equation (C.8) follows immediately from (C.9). To prove the opposite

direction, we assume that a vector β exists that is not an eigenvector of
K, while Kβ is an eigenvector of K. This assumption infers that (C.8) is
fulfilled and (C.9) is not. Thus, we need to show that the assumption leads
to a contradiction.

We only consider the case that β is orthogonal to the subspace ker K (the
space of vectors α fulfilling Kα = 0) because the elements of ker K—if they
exist—solve already both (C.8) and (C.9). Since K is symmetric, β can be
written as a linear combination of the pairwise orthogonal eigenvectors αl of
K, β =

∑

l ulα
l. At least, two ul must differ from zero because β itself is not

an eigenvector. It follows that Kβ =
∑

l ulλ
′
lα

l with λ′l being the eigenvalues
corresponding to αl. All eigenvalues are non-zero because β is orthogonal to
ker K. Thus, Kβ can be also not an eigenvector of K. This contradicts our
first assumption. Therefore, (C.9) follows from (C.8).

C.3. ESTIMATE OF ERROR ACCUMULATION 163

C.3 Estimate of error accumulation

This section shows that the expectation value of the square error of the antic-
ipated sensory input increases only linearly with the number of anticipation
steps (Hoffmann and Möller, 2004). Let e be the error of the feed-forward
output after a single step. e is a vector with one component for each output
component. We assume that the probability distribution of this error is in-
dependent of the input to the network. Thus, all errors are independent of
each other. In addition, we assume that the error for each output component
has zero mean and the same standard deviation σ.

On this basis, we compute the expectation value of the square error. The
total error of the chain output is the sum of the errors of the outputs of
each link. To illustrate this, think of each correct transformation at one link
as a line in a d-dimensional space, with d equal to the number of output
components (figure C.1).

e1

initial

chain output

e

e3

2

E

correct final

Figure C.1: Error accumulation in a feed-forward chain. Each solid black line is
the correct transformation for one link. A dashed line is the correct transformation
for a slightly different starting point.

A line connects an input point with an output point (of the transforma-
tion). The error at link i can be drawn as an arrow ei at the end of a line
(output point). This will result in a different starting point for the next line.
If the error is small1 and the transformation function sufficiently smooth, we
can approximate that the displacement of the starting point does not change
the direction and length of the next line, which is the correct transformation
at the new starting point. Thus, the displacement E of the final point is the
sum of the vectorial errors of each stage. Therefore, given l links, the total

1For the MLP, the square error stayed below 2.4 pixels squared, which is low compared
to the range of values observed in figure 7.4: the square difference between the largest
and the smallest value is about 500 pixels squared.

164 APPENDIX C. PROOFS

error E can be written as

E =

∥

∥

∥

∥

∥

l
∑

i=1

ei

∥

∥

∥

∥

∥

. (C.10)

We compute the expectation value of E2,

〈

E2
〉

=

〈∥

∥

∥

∥

∥

l
∑

i=1

ei

∥

∥

∥

∥

∥

2〉

. (C.11)

Doing the square operation on the sum gives

〈

E2
〉

=

〈

∑

i

eTi ei +
∑

i,j 6=i

eTi ej

〉

, (C.12)

and using the linear property of the expectation value results in

〈

E2
〉

=
∑

i

〈

eTi ei
〉

+
∑

i,j 6=i

〈

eTi ej
〉

=
∑

i

〈

eTi ei
〉

. (C.13)

The last term vanishes because ei and ej are independent random variables,
for i 6= j, and each variable has zero mean. The remainder is a sum over the
variances for each link and dimension. Therefore,

〈

E2
〉

= l d σ2 . (C.14)

Thus, the expectation value of the square error increases only linearly with
the chain length.

C.4 Contraction of input vectors

This section shows that a multi-layer perceptron maps data points outside
its training domain closer to its domain if the perceptron is trained to map
data distributed in a circle onto the same circle (see section 7.4). Let βs be
the input to the trained network. Here, s has unit length and β is a scalar.

We study the effect of β on the network output o. Let U be a h × 2
matrix containing the weights between the input and the hidden layer, and
V be a 2 × h matrix with the weights between the hidden and the output
layer. Further, let uk be a column vector of U, and vk be a row vector of V.
We assume that all threshold values equal zero, and that the weights fulfill:
uTkul = δkl and vTk vl = δkl.

C.4. CONTRACTION OF INPUT VECTORS 165

We first look at the case β = 1. The network output is

oi(1) =

h
∑

j=1

vij tanh

(

2
∑

k=1

ujksk

)

. (C.15)

As a result of the network training, o(1) has unit length. Let y = Us be
the argument of the tanh-function. From the assumptions follows that y has
unit length,

||y||2 =

∥

∥

∥

∥

∥

2
∑

k=1

skuk

∥

∥

∥

∥

∥

2

=

2
∑

k=1

s2
k = 1 . (C.16)

Thus, the states y lie on a circle with radius one and spanned by {uk} in a
h-dimensional space (figure C.2).

1

2

v1

2

u

u

1

v

y

y2

y3

Figure C.2: Image of the training patterns (gray ellipse) in the space of the
hidden neurons (here, h = 3). The circle lies on a plane spanned by {uk}. The
vectors {vk} lie in the same plane.

Let ỹ be the vector with components tanh(yj). A larger number h of
hidden units leads to smaller components of y (section 7.4: yj equals on
average 1/h). Therefore, we approximate tanh(yj) ≈ yj. It follows that also
ỹ lies on the circle in the span of {uk}.

Next, we look at the effect of the weight matrix V. After training, all x
(which have unit length) are mapped (C.15) onto a circle with radius one.
Thus, V needs to project the circle in the span of {uk} onto the unit circle in
the two-dimensional output space. This is only achieved if both row vectors

166 APPENDIX C. PROOFS

v1 and v2 lie in the span of {uk} (otherwise, the projection would be an
ellipse). It follows that ỹ is also in the span of {vk}, and any vector ỹ in the
span of {vk} can be written as ỹ =

∑

k(ỹ
Tvk)vk.

Next, we look at the case β > 1. Let ỹ(β) be the vector with components
tanh(βyj). Here, the above tanh-approximation is generally not valid, and
ỹ(β) might protrude out of the plane spanned by {vk}. Thus, we need to
write ỹ(β) =

∑

k

(

ỹ(β)Tvk
)

vk +b, with b orthogonal to {vk}. The squares

of this equation fulfill ||ỹ(β)||2 =
∑

k ||ỹ(β)Tvk||2+||b||2, from which follows:

∑

k

‖ỹ(β)Tvk‖2 ≤ ‖ỹ(β)‖2 . (C.17)

Therefore, for β > 1, the squared length of the output vector o can be written
as

||o(β)||2 =

2
∑

k=1

(

h
∑

j=1

(tanh βyj) vkj

)2

≤
h
∑

j=1

(tanh βyj)
2
< β2

h
∑

j=1

(tanh yj)
2
.

(C.18)
The last inequality follows from tanh(β) being a convex function for β > 0.
Under the assumption tanh(yj) = yj and (C.16), the last term in (C.18)
equals β2. Thus,

‖o(β)‖ < β . (C.19)

Points further away from the circle are mapped closer to the circle (the
training domain).

Appendix D

Database of hand-written digits

Figure D.1 shows the first images of each digit class from the MNIST database
(LeCun, 1998). This database is freely available for download as a courtesy
of Yann LeCun.

Figure D.1: The first digits from the MNIST database.

167

168 APPENDIX D. DATABASE OF HAND-WRITTEN DIGITS

Appendix E

Notation and Symbols

Some mathematical notations are used throughout this book:

x a vector

A a matrix

xi component of the vector x

aij component of the matrix A

aTb scalar product of the vectors a and b

abT matrix with components aibj (direct product)

〈x〉 expectation value of a random variable x

{xi} set of vectors with index i

p(x|j) probability of x given the condition j (conditional probability)

The meaning of often used symbols:

t time (discrete)

St sensory state at time t

Mt motor command at time t

IR set of all real numbers

n number of training patterns

d dimension of training patterns

m number of units in a mixture, or for kernel PCA, the number
of points in a reduced set

q number of principal components

cj code-book vector or the center of the unit j

169

170 APPENDIX E. NOTATION AND SYMBOLS

C covariance matrix of a data distribution

W d× q matrix containing the principal components as columns

w a principal component

λl eigenvalue belonging to the principal component l

σ2 residual variance per dimension. σ is also used as the width of
a Gaussian function

K kernel matrix

In this book, the following abbreviations appear:

PCA principal component analysis (or analyzer)

MLP multi-layer perceptron

RNN recurrent neural network

SOM self-organizing map

PSOM parametrized self-organizing map

NGPCA neural gas extended to principal component analysis

MPPCA mixture of probabilistic principal component analyzers

RRLSA robust recursive least square algorithm

Bibliography

Albrecht, S., Busch, J., Kloppenburg, M., Metze, F., and Tavan, P. (2000).
Generalized radial basis function networks for classification and novelty de-
tection: Self-organization of optimal bayesian decision. Neural Networks,
13, 1075–1093.

Archambeau, C., Lee, J. A., and Verleysen, M. (2003). On convergence
problems of the EM algorithm for finite gaussian mixtures. In Verleysen, M.,
(Ed.), Proceedings of the European Symposium on Artificial Neural Networks
(ESANN 2003), pages 99–106, Belgium. d-side.

Astafiev, S. V., Stanley, C. M., Shulman, G. L., and Corbetta, M. (2004).
Extrastriate body area in human occipital cortex responds to the perfor-
mance of motor actions. Nature Neuroscience, 7, 542–548.

Bach-Y-Rita, P. (1972). Brain Mechanisms in Sensory Substitution. Aca-
demic Press, New York.

Bachmann, C. M., Cooper, L. N., Dembo, A., and Zeitouni, O. (1987). A
relaxation model for memory with high storage density. Proceedings of the
National Academy of Sciences of the USA, 84, 7529–7531.

Baldi, P. and Heiligenberg, W. (1988). How sensory maps could enhance res-
olution through ordered arrangements of broadly tuned receivers. Biological
Cybernetics, 59, 313–318.

Batista, A. P., Buneo, C. A., Snyder, L. H., and Andersen, R. A. (1999).
Reach plans in eye-centered coordinates. Science, 285, 257–260.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford
University Press, UK.

Blakemore, S. J., Wolpert, D., and Frith, C. (2000). Why can’t you tickle
yourself? NeuroReport, 11, R11–R16.

Blanz, V. and Vetter, T. (1999). A morphable model for the synthesis
of 3D faces. In Rockwood, A., (Ed.), Siggraph 1999, Computer Graphics
Proceedings, pages 187–194, Los Angeles. Addison Wesley Longman.

171

172 BIBLIOGRAPHY

Blasdel, G. G. and Salama, G. (1986). Voltage-sensitive dyes reveal a mod-
ular organization in monkey striate cortex. Nature, 321, 579–585.

Brooks, R. A. (1986a). Achieving artificial intelligence through building
robots. Technical Report A. I. Memo 899, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, USA.

Brooks, R. A. (1986b). A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, RA-2, 14–23.

Burges, C. J. C. (1996). Simplified support vector decision rules. In Saitta,
L., (Ed.), Proceedings of the 13th International Conference on Machine
Learning, pages 71–77, San Mateo, CA. Morgan Kaufmann.

Carter Jr., E. F. (1994). A general purpose simulated annealing class.
http://www.taygeta.com/Classes.html.

Cipolla, R. and Hollinghurst, N. (1997). Visually guided grasping in un-
structured environments. Robotics and Autonomous Systems, 19, 337–346.

Colent, C., Pisella, L., Bernieri, C., Rode, G., and Rossetti, Y. (2000).
Cognitive bias induced by visuo-motor adaptation to prisms: A simulation
of unilateral neglect in normal individuals. NeuroReport, 11, 1899–1902.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learn-
ing, 20, 273–297.

Cover, T. M. (1965). Geometrical and statistical properties of systems of lin-
ear inequalities with applications in pattern recognition. IEEE Transactions
on Electronic Computers, 14, 326–334.

Cruse, H. (2001). Building robots with a complex motor system to under-
stand cognition. In Webb, B. and Consi, T. R., (Eds.), Biorobotics, pages
107–120. MIT Press, Cambridge, MA.

Cruse, H. (2003a). The evolution of cognition—a hypothesis. Cognitive
Science, 27, 135–155.

Cruse, H. (2003b). A recurrent network for landmark-based navigation.
Biological Cybernetics, 88, 425–437.

Cruse, H. and Steinkühler, U. (1993). Solution of the direct and inverse
kinematic problems by a common algorithm based on the mean of multiple
computations. Biological Cybernetics, 69, 345–351.

BIBLIOGRAPHY 173

Daszykowski, M., Walczak, B., and Massart, D. L. (2002). On the optimal
partitioning of data with k-means, growing k-means, neural gas, and growing
neural gas. Journal of Chemical Information and Computer Science, 42,
1378–1389.

Dembo, A. and Zeitouni, O. (1988). General potential surfaces and neural
networks. Physical Review A, 37, 2134–2143.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum like-
lihood from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society. Series B, 39, 1–38.

Diamantaras, K. I. and Kung, S. Y. (1996). Principal Component Neural
Networks. John Wiley & Sons, New York.

Distante, C., Anglani, A., and Taurisano, F. (2000). Target reaching by
using visual information and Q-learning controllers. Autonomous Robots, 9,
41–50.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14,
179–211.

Franz, V. H., Bülthoff, H. H., and Fahle, M. (2003). Grasp effects of the
Ebbinghaus illusion: Obstacle avoidance is not the explanation. Experimen-
tal Brain Research, 149, 470–477.

Fritzke, B. (1995). A growing neural gas network learns topologies. Advances
in Neural Information Processing Systems, 7, 625–632.

Fuentes, O. and Nelson, R. C. (1998). Learning dextrous manipulation
skills for multifingered robot hands using the evolution strategy. Machine
Learning, 31, 223–237.

Gibson, J. J. (1977). The theory of affordances. In Shaw, R. and Brans-
ford, J., (Eds.), Perceiving, Acting, and Knowing, chapter 3, pages 67–82.
Erlbaum, Hillsdale, NJ.

Goodale, M. A. and Milner, A. D. (1992). Separate visual pathways for
perception and action. Trends in Neurosciences, 15, 20–25.

Gordon, I. E. (1989). Theories of visual perception. John Wiley & Sons,
Chichester, UK.

Graziano, M. S., Taylor, C. S., and Moore, T. (2002). Complex movements
evoked by microstimulation of precentral cortex. Neuron, 34, 841–851.

174 BIBLIOGRAPHY

Gregory, R. L. (1998). Eye and Brain, pages 136–169. Oxford University
Press, UK.

Gregory, R. L. (2003). Seeing after blindness. Nature Neuroscience, 6,
909–910.

Gross, H.-M., Heinze, A., Seiler, T., and Stephan, V. (1999). Generative
character of perception: A neural architecture for sensorimotor anticipation.
Neural Networks, 12, 1101–1129.

Grush, R. (2004). The emulation theory of representation: Motor control,
imagery, and perception. Behavioral and Brain Sciences, 27, 377–442.

Harman, K. L., Humphrey, G. K., and Goodale, M. A. (1999). Active man-
ual control of object views facilitates visual recognition. Current Biology, 9,
1315–1318.

Hastie, T. and Stuetzle, W. (1989). Principal curves. Journal of the Amer-
ican Statistical Association, 84, 502–516.

Haugeland, J. (1986). Artificial Intelligence: The Very Idea. MIT Press,
Cambridge, MA.

Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice
Hall, Paramus, NJ.

Held, R. and Freedman, S. J. (1963). Plasticity in human sensorimotor
control. Science, 142, 455–462.

Held, R. and Hein, A. (1963). Movement-produced stimulation in the de-
velopment of visually guided behaviour. Journal of Comparative and Phys-
iological Psychology, 56, 872–876.

Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory
of Neural Computation. Addison-Wesley, Redwood City, CA.

Hesslow, G. (2002). Conscious thought as simulation of behaviour and per-
ception. Trends in Cognitive Sciences, 6, 242–247.

Hinton, G. E., Dayan, P., and Revow, M. (1997). Modeling the manifolds
of images of handwritten digits. IEEE Transactions on Neural Networks, 8,
65–74.

Hoffmann, H. and Möller, R. (2003). Unsupervised learning of a kinematic
arm model. In Kaynak, O., Alpaydin, E., Oja, E., and Xu, L., (Eds.), Artifi-
cial Neural Networks and Neural Information Processing—ICANN/ICONIP
2003, LNCS, volume 2714, pages 463–470. Springer, Berlin.

BIBLIOGRAPHY 175

Hoffmann, H. and Möller, R. (2004). Action selection and mental trans-
formation based on a chain of forward models. In Schaal, S., Ijspeert, A.,
Billard, A., Vijayakumar, S., Hallam, J., and Meyer, J.-A., (Eds.), From
Animals to Animats 8, Proceedings of the Eighth International Conference
on the Simulation of Adaptive Behavior, pages 213–222, Los Angeles, CA.
MIT Press.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of
Sciences of the USA, 79, 2554–2558.

Hopfield, J. J. (1984). Neurons with graded response have collective com-
putational properties like those of two-state neurons. Proceedings of the
National Academy of Sciences of the USA, 81, 3088–3092.

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular inter-
action and functional architecture in the cat’s visual cortex. Journal of
Physiology, 160, 106–154.

James, K. H., Humphrey, G. K., Vilis, T., Corrie, B., Baddour, R., and
Goodale, M. A. (2002). “Active” and “passive” learning of three-dimensional
object structure within an immersive virtual reality environment. Behavior
Research Methods, Instruments, and Computers, 34, 383–390.

Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism
for motor cognition. NeuroImage, 14, S103–S109.

Jirenhed, D.-A., Hesslow, G., and Ziemke, T. (2001). Exploring internal
simulation of perception in mobile robots. Lund University Cognitive Stud-
ies, 86, 107–113.

Jordan, M. I. and Rumelhart, D. E. (1992). Forward models: Supervised
learning with a distal teacher. Cognitive Science, 16, 307–354.

Kambhatla, N. and Leen, T. K. (1997). Dimension reduction by local prin-
cipal component analysis. Neural Computation, 9, 1493–1516.

Kawato, M., Furukawa, K., and Suzuki, R. (1987). A hierarchical neural-
network model for control and learning of voluntary movement. Biological
Cybernetics, 57, 169–185.

Kohonen, T. (1982). Self-organized formation of topologically correct fea-
ture maps. Biological Cybernetics, 43, 59–69.

Kohonen, T. (1989). Self-Organization and Associative Memory, 3rd edition.
Springer, Berlin.

176 BIBLIOGRAPHY

Kohonen, T. (1995). Self-Organizing Maps. Springer, Berlin.

Kuperstein, M. (1988). Neural model of adaptive hand-eye coordination for
single postures. Science, 239, 1308–1311.

Kuperstein, M. (1990). INFANT neural controller for adaptive sensory-
motor coordination. Neural Networks, 4, 131–145.

Latham, P. E., Deneve, S., and Pouget, A. (2003). Optimal computation
with attractor networks. Journal of Physiology, 97, 683–694.

LeCun, Y. (1998). The MNIST database of handwritten digits. NEC Re-
search Institute, http://yann.lecun.com/exdb/mnist/index.html.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86,
2278–2324.

Linde, Y., Buzo, A., and Gray, R. M. (1980). An algorithm for vector
quantizer design. IEEE Transactions on Communications, 28, 84–95.

Linden, D. E. J., Kallenbach, U., Heinecke, A., Singer, W., and Goebel,
R. (1999). The myth of upright vision. A psychophysical and functional
imaging study of adaptation to inverting spectacles. Perception, 28, 469–
481.

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions
on Information Theory, 28, 129–137.

Luria, S. M. and Kinney, J. A. S. (1970). Underwater vision. Science, 167,
1454–1461.

Mallot, H. A., Kopecz, J., and von Seelen, W. (1992). Neuroinformatik als
empirische Wissenschaft. Kognitionswissenschaft, 3, 12–13.

Martinetz, T. M., Berkovich, S. G., and Schulten, K. J. (1993). “Neural-
Gas” network for vector quantization and its application to time-series pre-
diction. IEEE Transactions on Neural Networks, 4, 558–569.

Martinetz, T. M. and Schulten, K. J. (1990). Hierarchical neural net for
learning control of a robot’s arm and gripper. In Proceedings of the Inter-
national Joint Conference on Neural Networks, volume 3, pages 747–752.
IEEE, New York.

Meinicke, P. (2000). Unsupervised Learning in a Generalized Regression
Framework. PhD thesis, Faculty of Technology, Bielefeld University, Ger-
many.

BIBLIOGRAPHY 177

Meinicke, P. and Ritter, H. (2001). Resolution-based complexity control for
gaussian mixture models. Neural Computation, 13, 453–475.

Micchelli, C. A. (1986). Interpolation of scattered data: Distance matrices
and conditionally positive definite functions. Constructive Approximation,
2, 11–22.

Mika, S., Schölkopf, B., Smola, A. J., Müller, K.-R., Scholz, M., and Rätsch,
G. (1999). Kernel PCA and de-noising in feature spaces. Advances in Neural
Information Processing Systems, 11, 536–542.

Miller, J. P., Jacobs, G. A., and Theunissen, F. E. (1991). Representation
of sensory information in the cricket cercal sensory system. I. Response
properties of the primary interneurons. Journal of Neurophysiology, 66,
1680–1689.

Molina-Vilaplana, J., Pedreño-Molina, J. L., and López-Coronado, J.
(2004). Hyper RBF model for accurate reaching in redundant robotic sys-
tems. Neurocomputing, 61, 495–501.

Möller, R. (1996). Wahrnehmung durch Vorhersage—Eine Konzeption der
handlungsorientierten Wahrnehmung. PhD thesis, Faculty of Computer
Science and Automation, Ilmenau Technical University, Germany.

Möller, R. (1999). Perception through anticipation—a behavior-based ap-
proach to visual perception. In Riegler, A., Peschl, M., and von Stein,
A., (Eds.), Understanding Representation in the Cognitive Sciences, pages
169–176. Plenum Academic / Kluwer Publishers, New York.

Möller, R. (2002). Interlocking of learning and orthonormalization in
RRLSA. Neurocomputing, 49, 429–433.

Möller, R. and Hoffmann, H. (2004). An extension of neural gas to local
PCA. Neurocomputing, 62, 305–326.

Moody, J. and Darken, C. J. (1989). Fast learning in networks of locally-
tuned processing units. Neural Computation, 1, 281–294.

Movellan, J. R. and McClelland, J. L. (1993). Learning continuous prob-
ability distributions with symmetric diffusion networks. Cognitive Science,
17, 463–496.

Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., and Rizzolatti,
G. (1997). Object representation in the ventral premotor cortex (area F5)
of the monkey. Journal of Neurophysiology, 78, 2226–2230.

178 BIBLIOGRAPHY

Nakazawa, K., Quirk, M. C., Chitwood, R. A., Watanabe, M., Yeckel, M. F.,
Sun, L. D., Kato, A., Carr, C. A., Johnston, D., Wilson, M. A., and Tone-
gawa, S. (2002). Requirement for hippocampal CA3 NMDA receptors in
associative memory recall. Science, 297, 211–218.

Oja, E. (1982). A simplified neuron model as a principal component ana-
lyzer. Journal of Mathematical Biology, 15, 267–273.

Oja, E. (1989). Neural networks, principle components, and subspaces.
International Journal of Neural Systems, 1, 61–68.

O’Regan, J. K. and Noë, A. (2001). A sensorimotor account of vision and
visual consciousness. Behavioral and Brain Sciences, 24, 939–1031.

Ouyang, S., Bao, Z., and Liao, G.-S. (2000). Robust recursive least squares
learning algorithm for principal component analysis. IEEE Transactions on
Neural Networks, 11, 215–221.

Oztop, E., Bradley, N. S., and Arbib, M. A. (2004). Infant grasp learning:
A computational model. Experimental Brain Research, 158, 480–503.

Parzen, E. (1962). On estimation of a probability density function and
mode. Annals of Mathematical Statistics, 33, 1065–1076.

Pelah, A. and Barlow, H. B. (1996). Visual illusion from running. Nature,
381, 283–283.

Pfeifer, R. and Scheier, C. (1999). Understanding Intelligence. MIT Press,
Cambridge, MA.

Philipona, D., O’Regan, J. K., and Nadal, J.-P. (2003). Is there some-
thing out there? Inferring space from sensorimotor dependencies. Neural
Computation, 15, 2029–2049.

Philipona, D., O’Regan, J. K., Nadal, J.-P., and Coenen, O. J.-M. D. (2004).
Perception of the structure of the physical world using unknown multimodal
sensors and effectors. In Advances in Neural Information Processing Sys-
tems, volume 16. MIT Press.

Pouget, A., Dayan, P., and Zemel, R. S. (2003). Inference and computation
with population codes. Annual Review of Neuroscience, 26, 381–410.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.
(1993). Numerical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, UK.

BIBLIOGRAPHY 179

Prinz, W. (1997). Perception and action planning. European Journal of
Cognitive Psychology, 9, 129–154.

Qiu, G., Varley, M. R., and Terrell, T. J. (1994). Improved clustering
using deterministic annealing with a gradient descent technique. Pattern
Recognition Letters, 15, 607–610.

Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster
backpropagation learning: The RPROP algorithm. In Proceedings of the
IEEE International Conference on Neural Networks, pages 586–591, San
Francisco, CA.

Ritter, H., Martinetz, T., and Schulten, K. (1990). Neuronale Netze.
Addison-Wesley, Bonn, Germany.

Ritter, H. J. (1993). Parametrized self-organizing maps. In Gielen, S. and
Kappen, B., (Eds.), Proceedings of the International Conference on Artificial
Neural Networks, pages 568–575. Springer, Berlin.

Ritter, H. J., Martinetz, T. M., and Schulten, K. J. (1989). Topology-
conserving maps for learning visuo-motor-coordination. Neural Networks,
2, 159–168.

Ritter, H. J. and Schulten, K. J. (1986). Topology conserving mappings
for learning motor tasks. In Denker, J. S., (Ed.), Neural Networks for
Computing, volume 151, pages 376–380, Snowbird, UT. AIP Conference
Proceedings.

Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., and
Matelli, M. (1988). Functional organization of inferior area 6 in the macaque
monkey. Experimental Brain Research, 71, 491–507.

Rizzolatti, G. and Fadiga, L. (1998). Grasping objects and grasping action
meanings: The dual role of monkey rostroventral premotor cortex (area F5).
Novartis Foundation Symposium, 218, 81–103.

Rizzolatti, G., Fogassi, L., and Gallese, V. (2001). Neurophysiological mech-
anisms underlying the understanding and imitation of action. Nature Re-
views Neuroscience, 2, 661–670.

Rose, K. (1998). Deterministic annealing for clustering, compression, clas-
sification, regression, and related optimization problems. Proceedings of the
IEEE, 86, 2210–2239.

Rose, K., Gurewitz, E., and Fox, G. C. (1990). Statistical mechanics and
phase transitions in clustering. Physical Review Letters, 65, 945–948.

180 BIBLIOGRAPHY

Rossetti, Y., Rode, G., Pisella, L., Farné, A., Li, L., Boisson, D., and
Perenin, M.-T. (1998). Prism adaptation to a rightward optical deviation
rehabilitates left hemispatial neglect. Nature, 395, 166–169.

Rubner, J. and Tavan, P. (1989). A self-organizing network for principal-
component analysis. Europhysics Letters, 10, 693–698.

Salganicoff, M., Ungar, L. H., and Bajcsy, R. (1996). Active learning for
vision-based robot grasping. Machine Learning, 23, 251–278.

Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear
feedforward neural network. Neural Networks, 2, 459–473.

Schenck, W., Hoffmann, H., and Möller, R. (2003). Learning internal models
for eye-hand coordination in reaching and grasping. In Proceedings of the
European Cognitive Science Conference, pages 289–294. Erlbaum, Mahwah,
NJ.

Schenck, W. and Möller, R. (2004). Staged learning of saccadic eye move-
ments with a robot camera head. In Bowman, H. and Labiouse, C., (Eds.),
Connectionist Models of Cognition and Perception II, pages 82–91. World
Scientific, London, NJ.

Schölkopf, B., Knirsch, P., Smola, A. J., and Burges, C. (1998a). Fast
approximation of support vector kernel expansions, and an interpretation
of clustering as approximation in feature spaces. In Levi, P., Ahlers, R.-J.,
May, F., and Schanz, M., (Eds.), 20. DAGM Symposium Mustererkennung,
pages 124–132. Springer, Berlin.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels. MIT Press,
Cambridge, MA.

Schölkopf, B., Smola, A. J., and Müller, K.-R. (1998b). Nonlinear com-
ponent analysis as a kernel eigenvalue problem. Neural Computation, 10,
1299–1319.

Simons, D. J. and Wang, R. F. (1998). Perceiving real-world viewpoint
changes. Psychological Science, 9, 315–320.

Simpson, J. and Weiner, E., (Eds.) (1989). Oxford English Dictionary,
Second Edition. Oxford University Press, UK.

Steinkühler, U. and Cruse, H. (1998). A holistic model for an internal
representation to control the movement of a manipulator with redundant
degrees of freedom. Biological Cybernetics, 79, 457–466.

BIBLIOGRAPHY 181

Stratton, G. M. (1896). Some preliminary experiments on vision without
inversion of the retinal image. Psychological Review, 3, 611–617.

Stratton, G. M. (1897). Vision without inversion of the retinal image. Psy-
chological Review, 4, 341–360; 463–481.

Sugita, Y. (1996). Global plasticity in adult visual cortex following reversal
of visual input. Nature, 380, 523–526.

Sun, H.-J., Campos, J. L., and Chan, G. S. W. (2003). Multisensory integra-
tion in the estimation of relative path length. Experimental Brain Research,
154, 246–254.

Szu, H. and Hartley, R. (1987). Fast simulated annealing. Physics Letters
A, 122, 157–162.

Tani, J. (1996). Model-based learning for mobile robot navigation from the
dynamical systems perspective. IEEE Transactions on Systems, Man, and
Cybernetics—Part B, 26, 421–436.

Tani, J. and Nolfi, S. (1999). Learning to perceive the world as articulated:
An approach for hierarchical learning in sensory-motor systems. Neural
Networks, 12, 1131–1141.

Tavan, P., Grubmüller, H., and Kühnel, H. (1990). Self-organization of
associative memory and pattern classification: Recurrent signal processing
on topological feature maps. Biological Cybernetics, 64, 95–105.

Tipping, M. E. and Bishop, C. M. (1997). Probabilistic principal component
analysis. Technical Report 010, Neural Computing Research Group.

Tipping, M. E. and Bishop, C. M. (1999). Mixtures of probabilistic principal
component analyzers. Neural Computation, 11, 443–482.

Tolman, E. C. (1932). Purposive Behavior in Animals and Men. The Cen-
tury Co., New York.

Treue, S. and Trujillo, J. C. M. (1999). Feature-based attention influences
motion processing gain in macaque visual cortex. Nature, 399, 575–579.

Uno, Y., Fukumura, N., Suzuki, R., and Kawato, M. (1995). A computa-
tional model for recognizing objects and planning hand shapes in grasping
movements. Neural Networks, 8, 839–851.

Walter, J. A., Nölker, C., and Ritter, H. (2000). The PSOM algorithm
and applications. In Proceedings of the Symposium on Neural Computation,
pages 758–764.

182 BIBLIOGRAPHY

Webb, B. (2001). Can robots make good models of biological behaviour?
Behavioral and Brain Sciences, 24, 1033–1050.

Wentzell, A. (2003). Tulane University, Math 301, Lecture 19, Problem 6.

Wexler, M. and Klam, F. (2001). Movement prediction and movement pro-
duction. Journal of Experimental Psychology: Human Perception and Per-
formance, 27, 48–64.

Wohlschläger, A. (2001). Mental object rotation and the planning of hand
movements. Perception & Psychophysics, 63, 709–718.

Wolpert, D. M., Ghahramani, Z., and Jordan, M. I. (1995). An internal
model for sensorimotor integration. Science, 269, 1880–1882.

Yair, E., Zeger, K., and Gersho, A. (1992). Competitive learning and soft
competition for vector quantizer design. IEEE Transactions on Signal Pro-
cessing, 40, 294–309.

