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Abstract

Activity in layer 2/3 of the mouse primary visual cortex has been shown to depend both on visual input
and the mouse’s locomotion. Moreover, this activity is altered by a mismatch between the observed
visual flow and the predicted visual flow from locomotion. Here, I present a simple computational
model that explains previously reported recordings from layer 2/3 neurons in mice. In my model, layer
2/3 encodes the velocity difference between the estimate from visual flow and the prediction from
locomotion using a neural population code. Moreover, I describe a hypothesized mechanism for how
the brain may carry out computations of variables encoded in population codes. This mechanism may
point to a general principle for computing any mathematical function in the brain.
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1 Introduction

The primary visual cortex, also known as V1,
plays a fundamental role in early visual processing.
It processes basic visual features such as orien-
tation, color, and visual flow. In recent years,
evidence has been presented that shows that neu-
ral activity in V1 also depends on the animal’s
motor output [Jordan and Keller, 2020, Keller
et al, 2012, Leinweber et al, 2017, Miura and
Scanziani, 2022]. This observation is consistent
with the concept of internal models that pre-
dict the sensory consequences of motor commands
[Hoffmann, 2007].

To explore the mechanism of these internal
models, experiments have been carried out that
create a mismatch between the actual sensory
input and the sensory input that would be pre-
dicted given a certain motor output, e.g., [Jordan
and Keller, 2020]. This mismatch can be realized

using a virtual reality setup, where, e.g., a head-
fixed mouse runs on a spherical treadmill, while
receiving controlled visual input from a screen sur-
rounding the mouse [Keller et al, 2012]. These
experiments have shown that layer 2/3 in V1
responds to a mismatch between predicted and
observed visual flow [Jordan and Keller, 2020].
But the neural mechanism behind this mismatch
response is still being debated [Muzzu and Saleem,
2021, Vasilevskaya et al, 2023].

One mechanism that has been put forth is
that the motor activity changes the gain on the
V1 neurons [Fu et al, 2014]. This idea, however,
has been challenged by experiments [Vasilevskaya
et al, 2023]. A recently more prominent hypothe-
sis is that the mismatch response corresponds to a
prediction error [Hertäg and Clopath, 2022, Keller
and Mrsic-Flogel, 2018, Mikulasch et al, 2023b],
where single neurons represent this error. In con-
trast, population coding is ubiquitous in the visual



cortex [Miura and Scanziani, 2022, Pouget et al,
2000, Tanabe, 2013]. In a population code, each
neuron represents a preferred value and gets more
active the closer the encoded variable approaches
this preferred value [Hubel and Wiesel, 1959]. As
a group, the activity of the neurons resembles a
probability distribution of the encoded variable
[Pouget et al, 2000].

Based on such population coding, I propose
a simple computational model for explaining the
mismatch response. The predictions from this
model explain details observed by Jordan and
Keller [2020] better than a prediction-error at the
single-neuron level. The novelty of the model is to
encode the prediction error in a population of layer
2/3 neurons.

In the following, I describe the computa-
tional model and its predictions of the mismatch
response in more detail. The last part of the
Results section describes how a biological neural
network could compute a difference of variables
that are encoded in population codes. Implemen-
tation details of the results are in Methods, which
is followed by discussions. Finally, the article
concludes by presenting ideas for future work.

2 Results

My computational model encodes the difference in
velocity between the estimation from visual flow
and the prediction from locomotion in a popula-
tion of neurons. This velocity may refer to the
mouse’s body, with the difference representing a
prediction error. Alternatively, the velocity dif-
ference may refer to other moving objects in a
dynamic environment, as it is not explained by the
mouse’s self-motion.

The velocity is generally a vector. Here,
I assume that groups of neurons encode one-
dimensional projections of this vector. Together
these groups could reconstruct the original veloc-
ity vector. This encoding is different from the
traditional encoding hypothesis where neurons
encode the direction of a vector [Hubel andWiesel,
1959]. The advantage of the 1-d-projection encod-
ing is that additions and subtractions of vectors
can be reduced to additions and subtractions in
each of the 1-d projection subspaces. Moreover,
changes in speed, i.e., the magnitude of the veloc-
ity vector, will scale each projection by the same
factor. So, to study the impact of locomotion

speed, it is sufficient to model the population code
for only a single 1-d projection, where each neuron
has a preferred speed.

Here, I encoded the speed difference, ∆v,
between the estimation from visual observation,
vO, and the prediction from locomotion, vL, in
a population code of N = 100 neurons. Each
neuron responds to a preferred value, uniformly
distributed in the interval [−1 − vOff; 1 − vOff],
where vOff offsets the range from being centered
at 0 (Fig. 1). The unit of speed is arbitrary. The
response of neurons in the model represents the
average activity of neurons over many trials under
the same conditions.

With this model, I studied two experimental
conditions, as also described by Jordan and Keller
[2020]. In the match condition, the visual-flow-
based speed matched the prediction from locomo-
tion. That is, our neural population encodes the
difference, which is zero speed (Fig. 1A). In the
mismatch condition, the observed visual-flow was
zero, but the prediction from locomotion was non-
zero. Here, the encoded speed difference is the
negative of the locomotion speed.

The goal of my simulations is to predict the
mismatch response (vertical arrows in Fig. 1A)
between the two conditions as function of the
locomotion speed and compare with results from
neural recordings reported by Jordan and Keller
[2020]. I simulated 10 trials, with locomotion
speeds, vL, from 0.05 to 0.5 in increments of 0.05.
For each trial, I computed the population encod-
ing for the match and mismatch conditions (Fig.
1A shows a trial for locomotion speed 0.5).

Same as Jordan and Keller [2020], I opera-
tionally define two types of neurons: depolarizing
mismatch (dMM) neurons and hyperpolarizing
mismatch (hMM) neurons. Among the N neu-
rons, dMM neurons were those where the average
activation across speed trials in the mismatch con-
dition was at least 0.05 higher than in the match
condition, and hMM neurons were those where the
average activation in mismatch was at least 0.05
lower compared to match.

The resulting ratio of dMM and hMM neu-
rons depended on the offset of the encoded speed
range (Fig. 1B). For an offset of vOff = 0.76, the
ratio of dMM to hMM neurons matched best the
mouse experiments [Jordan and Keller, 2020]: 51
to 18 neurons versus 17 to 6 in experiment. The
remaining 31 neurons were unclassified. Using the
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Fig. 1: Neural population encoding the speed
difference between the predictions from visual
flow and locomotion. (A) In the Match condition,
the difference is zero. In the Mismatch condi-
tion, the visual flow is zero, resulting in the
difference ∆v. Depolarizing neurons (dMM) show
increased activity, and hyperpolarizing neurons
(hMM) show decreased activity. (B) The number
of dMM and hMM neurons depends on the offset
of the speed range (in A, vOff = 0.76).

simulation results as ground truth, we can cal-
culate the expected experimental numbers when
picking 32 neurons (as in [Jordan and Keller,
2020]) at random out of our 100. The result is in
good agreement with the experiment: n(dMM) =
16.3±2.3, n(hMM) = 5.8±1.8, and n(unclassified)
= 9.9 ± 2.2. Jordan and Keller [2020] reported 9
unclassified neurons.

Using the offset vOff = 0.76, the resulting
mismatch response positively correlated with loco-
motion speed for dMM neurons (linear fit with
slope 0.95 ± 0.03) and negatively for hMM neu-
rons (linear fit with slope −1.21 ± 0.05), as also
observed by Jordan and Keller [2020]. The cor-
relation coefficients are in good agreement with
experiment, showing dMM neurons with a median
above 0.5, hMM with a median below -0.5, and
unclassified neurons with near zero correlation and
a bias toward positive values (Fig. 2, compare with
Figure 2G in Jordan and Keller [2020]).

This correlation can be understood by consid-
ering the shift in the tuning curve for the mis-
match condition (Fig. 1A): the larger the shift, the
larger the activation difference for most neurons,
and therefore, the mismatch response. In con-
trast, for single-cell prediction errors, additional
elements (e.g., inhibition) would be required to
explain the sign difference in correlation between
dMM and hMM neurons.

Our model encodes the prediction error or
speed difference in a population code. Given
that the observed and predicted speeds are likely
encoded in population codes themselves, V1 would
need to compute a subtraction on population-
encoded variables. For this computation, I hypoth-
esize the following mechanism. I assume both vO
and vL are encoded in a neural population, and
we want the resulting ∆v = vO−vL to be encoded
in a neural population as well.

This computation can be achieved by log-
ical AND operations in dendritic branches, as
explained in the following example (Fig. 3). In
code vO, a neuron fires, which has a preferred
value of a5. Simultaneously, in code vL, another
neuron fires, which has a preferred value b2. Both
neurons connect to the same dendritic branch of a
neuron in code vO − vL that has a preferred value
of c4. Here, c4 happens to match the difference
a5 − b2. The branch and the corresponding neu-
ron fire if and only if both incoming axons from
a5 and b2 carry a spike (Fig. 3B).

In biology, there is evidence for such den-
dritic computation: spikes on nearby (20 µm)
synaptic connections on a branch are added with
a sigmoidal function [Polsky et al, 2004] (an
AND operation is a simplified sigmoidal function:
f(0+0) = 0, f(0+1) = 0, and f(1+1) = 1). More-
over, dendrites branch into multiple subdivisions
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Fig. 2: Predicted dependence of mismatch response on locomotion speed, vL, for dMM (A) and hMM
(B) neurons. Each curve shows the response for a single neuron. Units are same as in Figure 1. (C)
Correlation between mismatch response and locomotion across all population-code neurons. (D) Boxplot
of correlation depending on neural classification. Here, vOff = 0.76 for all panels.

[Larkman and Mason, 1990], allowing a separate
computation for each combination of neurons with
preferred values ai and bj . Here, I assume neural
connections for all possible combinations resulting
in ck = ai − bj (Fig. 3A shows two of them). Heb-
bian learning might be one mechanism to create
these connections between preferred values.

This mechanism ensures that any combination
of firing neurons i and j will result in triggering a
neuron k, where ck = ai−bj . In turn, neuron k fires
only if neurons with preferred values ai and bj =
ai − ck fire. On the neural level, there is no actual
subtraction to encode the difference; computation
happens through connecting neurons that encode
appropriate preferred values.

I define the activity of neurons in a code as
the average number of spikes fired over a given
time window. If the activity of neurons in code
vO is described by the probability pvO (ai) and the
activity in code vL by pvL(bj), then, given our
mechanism, the resulting code for vO−vL has the
distribution

p(ck) =
∑
i

pvO (ai)pvL(ai − ck) . (1)

In the continuous limit for large N , we obtain

p(∆v) =

∫
pvO (x)pvL(x−∆v)dx . (2)

This distribution is our desired population code
for the difference ∆v = vO − vL. Moreover, p(∆v)
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Fig. 3: Hypothesized subtraction of variables encoded in population codes. (A) Each dendritic branch
represents a difference between two specific values of the speed variables vO and vL. (B) A branch carries
out an AND operation on the receiving spikes.

is computed as expected from Bayesian statis-
tics given uncertainty about the values of vO and
vL, as expressed in the probability distributions
pvO (x) and pvL(y).

3 Methods

To compute the activation Ai of neuron i, I used a
Gaussian function of the encoded speed difference,
∆v,

Ai = exp
(
− (∆v − µi)

2/(2σ2)
)
, (3)

where µi is the preferred speed difference of neu-
ron i and σ = 0.4.

The mismatch response, ∆Ai, is the difference
between the activation in the mismatch and the
match condition,

∆Ai = A
i,mismatch −A

i,match . (4)

To compute the expected number of dMM and
hMM neurons, I computed, first, the probability,
p, of finding nd dMM, nh hMM, and nu unclassi-
fied neurons when selecting n neurons at random
out of N ,

p =

(
gd
nd

)(
gh
nh

)(
gu
nu

)(
N
n

) , (5)

where gd, gh, and gu are the ground truth numbers
from our simulation (gd = 51, gh = 18, and gu =
31 for N = 100). This probability was computed
for all possible values of nd, nh, and nu, allowing
evaluating the expected value and SD for each of
these variables.

The reported slopes in the text for the
responses of dMM and hMM neurons were com-
puted using linear fits to ∆A versus vL across all
neurons and trials for each neuron class. The linear
fits used bisquare weighting of residuals.

For each neuron i, I computed the Pearson cor-
relation coefficient between response and speed,

ri =

∑T
t=1(∆At

i −∆Ai)(v
t
L − vL)√∑T

t=1(∆At
i −∆Ai)2

√∑T
t=1(v

t
L − vL)2

,

(6)
where t is the trial index and T the total num-
ber of trials. Before computing the correlation, I
reproduced each speed trial 20 times with differ-
ent mean-zero Gaussian noise (SD = 0.15) added
to the response.

4 Discussion

A simple model of population coding the differ-
ence in predicted and observed speed explained
multiple phenomena observed in mouse experi-
ments: the ratio of dMM, hMM, and unclassified
neurons, the positive correlation of dMM response
with locomotion speed, and the negative corre-
lation of hMM response with locomotion speed.
Those phenomena are a consequence of the popu-
lation coding. A single-cell prediction error could
not predict these phenomena without additional
model elements, like, e.g., inhibitory input to
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hMM neurons to explain the different sign of
correlation.

The difference in predicted and observed speed
is commonly interpreted as a prediction error
[Hertäg and Clopath, 2022, Keller and Mrsic-
Flogel, 2018, Mikulasch et al, 2023b]. But this dif-
ference may be also interpreted as the optical-flow
component not explained by self motion [Miku-
lasch et al, 2023a]. My population-code model is
agnostic to the interpretation and to how the brain
might use the encoded information. Moreover, this
model is agnostic to the neural dynamics that will
result in the average neural activity as represented
by our population code.

As Jordan and Keller [2020], I defined dMM
and hMM neurons operationally. As such, there
may be no physiological difference between these
neurons, and as my model shows, there does not
need to be any. Moreover, the model explains why
there are unclassified neurons: they are part of
the population code, but their change in response
under mismatch just happened to be small, e.g.,
because the preferred value of a neuron is far away
from the encoded speed and due to the Gaussian
tuning the resulting changes in activation will be
small.

In our model, the ratio of dMM and hMM neu-
rons varied with the range of the encoded speed
values. The range offset vOff = 0.76 gave the
best match of the dMM/hMM ratio with exper-
iment. Coincidently, for this offset, the resulting
mismatch response also agreed better with the
experiment compared to other offsets: Figure S1 in
the Supplementary information shows mismatch
responses for different offset values. While the mis-
match response was stable for a range of values,
for much smaller and negative offsets, the response
distribution drifted away from the experimental
results.

A positive offset implies that the population
code can encode a larger range of negative pre-
diction errors, where vL is larger than vO. This
bias is reasonable if those values are more likely,
as indeed appears to be the case: a speed predic-
tion from locomotion can be larger than visually
estimated, e.g., when the feet are sliding on the
ground, while the optical flow stays constant.

For the results, I used a fixed number of neu-
rons and speed trials. Varying these numbers just
changes the density of the data points in the

mismatch-response scatter plots (Fig. 2A and B):
more speed trials lead to a higher density in the x
direction and more neurons to a higher density in
the y direction.

Moreover, for simplicity, I used a uniform
spacing of preferred values in a population code.
Changing this setting to randomly distributed pre-
ferred values had no significant impact on the
results. The curves in Fig. 2A and B would merely
be less regularly spaced. (The supplementary git-
lab code provides an option to test the random
distribution variant.)

My threshold for defining dMM and hMM neu-
rons was about 10% of the maximum mismatch
response, which is similar to the value used by Jor-
dan and Keller [2020]. Increasing this threshold
naturally reduces the number of dMM and hMM
neurons. In addition, a larger threshold resulted in
mismatch responses with a smaller variance, fol-
lowing closer the linear fit, while maintaining the
sign of the slope for both dMM and hMM neurons.

For simplicity, I focused on Gaussian tuning
curves. In the Supplementary information, Fig.
S2 shows results for cosine tuning curves, having
two peaks. In that case, the dMM response still
positively correlated with locomotion speed and
the hMM response negatively. However, for any
combination of offset and threshold, the ratios of
dMM, hMM, and unclassified neurons deviated
from the mouse experiments. So, Gaussian tuning
agreed better with experiment.

Another simplification was using only one
dimension of the velocity, but when recording from
the mouse, we expect a mix of neurons from popu-
lation codes for different velocity directions. This
increased complexity, however, had only a mini-
mal impact on the mismatch response (Fig. S4 in
Supplementary information).

While I provided arguments that layer 2/3 in
V1 encodes the prediction error in a population
code, I do not suggest that all of layer 2/3 neurons
participate in this encoding. It may be just one of
the functions of this layer.

The mechanism of how the cortex carries out
mathematical operations on population-encoded
variables is still unknown. I provided a hypothe-
sis for generating a population code that repre-
sents the difference of two population encoded-
variables. This mechanism probabilistically inte-
grates two variables with given uncertainties
expressed in probability distributions. It may
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therefore provide a path for Bayesian estimation
in the brain [Körding and Wolpert, 2004].

This new concept for computing the differ-
ence between two population-encoded variables is
not limited to subtractions, but any mathemat-
ical function could be computed. For example,
to compute f(a, x, y) = a sin(x + y), we connect
three neurons with specific preferred a, x, and y
values through one dendritic branch that belongs
to a neuron with preferred value a sin(x + y).
The connections could be created with Hebbian
learning, and the nervous system learns func-
tional mappings without explicitly representing
any function.

5 Conclusion

This article demonstrated that a population code
of the prediction error, the difference between
visual-flow-based velocity estimate and its pre-
diction from locomotion, could explain details
observed in neural recordings from layer 2/3 in V1
of mice. Despite its simplicity, our model could
predict ratios of dMM, hMM, and unclassified
neurons and the correlations of their mismatch
responses with locomotion speed. In contrast,
the single-cell prediction-error hypothesis requires
more explanations, like different connections to
inhibitory neurons between dMM and hMM neu-
rons.

The computation of variables encoded in pop-
ulation codes could be a major function of the
cortex, and I suggested a plausible mechanism for
carrying out such computations. Moreover, con-
necting neurons via multiple dendritic branches
that carry out local computations provides a
new perspective for creating artificial neural net-
works that hasn’t been exploited yet, despite its
apparent applications in biology.

Our future work aims at developing new com-
putational models based on these principles and
testing these models on experimental data. For
example, we plan to uncover the nature of how the
brain deals probabilistically with sensory uncer-
tainty. I hope that this work will lead to a
theory of the cortex, making testable quantitative
predictions, akin to the field of physics.

Supplementary information. The supple-
mentary information shows three additional
results: first, the mismatch responses for different

velocity ranges encoded by the population code,
second, the mismatch responses for a population
code with bimodal tuning curves, and third, the
mismatch responses when recording from neurons
selected from three different population codes,
each encoding the projection of a 2-dimensional
velocity vector onto a basis vector that is different
for each population code.

The code to run my computational model and
recreate the results is available at https://github.
com/drawfind/visuomotor mismatch.
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Abstract

This supplementary information shows three additional results: first, the mismatch responses for differ-
ent velocity ranges encoded by the population code, second, the mismatch responses for a population
code with bimodal tuning curves, and third, the mismatch responses when recording from neurons
selected from three different population codes, each encoding the projection of a 2-dimensional velocity
vector onto a basis vector that is different for each population code.

1 Dependence on velocity
range

The main article used a fixed velocity-range off-
set of vOff = 0.76. Here, I recreated the mismatch
responses for different vOff values (Fig. S1). For
values near 0.76, the results changed only mini-
mally compared to the main article. For vOff =
−0.75, the number of dMM neurons was largely
reduced, only 3 out of 100, and their responses
were not positively correlated with locomotion
speeds anymore. For negative vOff, the hMM
neurons showed mismatch responses with larger
variance across neurons.

2 Bimodal tuning

I ran the simulation replacing the Gaussian tuning
curves in our population-code model with cosine
tuning curves,

Ai = cos2 (2π(∆v − µi)/3) , (1)

where again µi is the preferred speed difference of
neuron i. The values µi were uniformly distributed
in the range from −1−vOff to 1−vOff with vOff =
0.76.

Figure S2 shows the results. The dMM and
hMM neurons still displayed their main character-
istic behavior: dMM mismatch response positively
correlated with locomotion speed (linear fit with
slope 1.34 ± 0.05) and hMM response negatively
correlated (linear fit with slope −1.49 ± 0.04).
Compared to Gaussian-tuning, the ratio of dMM
and hMM neurons was different, and no value of
the offset vOff could be chosen to make the ratios
match the mouse experiments. So, the population-
code model with Gaussian tuning was in better
agreement with experiment.
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Fig. S1: Predicted scatterplot between locomotion speed, vL, and mismatch response, ∆A, for different
offset values, vOff, of the population code. Each curve shows the response for a single neuron.
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Fig. S2: Results for bimodal tuning. (A) The speed difference, ∆v, was encoded by cosine tuning curves.
(B) Correlation between mismatch response, ∆A, and locomotion speed, vL. (C) The ratio of dMM and
hMM neurons depends on the speed range, here, as a function of offset vOff. (D) Boxplot of correlation
depending on neural classification.
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3 Multiple population codes

This section shows the results of a modified model
using three instead of one population code. Each
code encodes the velocity difference (prediction
error) along a given direction. Here, I represented
the velocity by a 2-dimensional vector,

v⃗L =

(
0.05m

0

)
, (2)

where m was an integer chosen from the interval
1 to 10, depending on the speed trial.

I used three basis vectors, as in Fig. S3, one
for each population code. That is, we have an
over-complete basis. I speculate that such encod-
ing would be more likely because the redundancy
increases robustness. To compute the value ∆vi
represented by each population code, we project
the locomotion velocity v⃗L onto the corresponding
basis vector,

vL,i = v⃗L · b⃗i . (3)

Fig. S3: Basis vectors for projecting the velocity
vector onto 1-dimensional subspaces, one for each
population code.

For each code, I used a velocity-range off-
set that was obtained by projecting the vector
(1.07, 0.6) onto the corresponding basis vector.
This offset was chosen to yield dMM/hMM ratios
as in the mouse experiments. I computed dMM
and hMM neurons as in the main article, here,

using a threshold of 0.02. This setting resulted in
157 dMM, 56 hMM, and 87 unclassified neurons.

Figure S4 shows the mismatch response
results, which were similar to the ones presented
in the main article. Different, here, we have three
mismatch responses mixed together and each mis-
match response had a different slope. The slope
varied because the size of the projected speed
values depended on the direction of the basis vec-
tor. Negative projected values, however, did not
change the sign of the slope.
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Fig. S4: Predicted scatterplot between locomo-
tion speed and mismatch response for dMM (A)
and hMM (B) neurons originating from three dif-
ferent population codes, each encoding the veloc-
ity difference along a given direction. Each curve
shows the result from a single neuron.
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