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Abstract

Several scientists suggested that certain perceptual qualities are based on sensori-
motor anticipation: for example, the softness of a sponge is perceived by anticipating
the sensations resulting from a grasping movement. For the perception of spatial
arrangements, this article demonstrates that this concept can be realized in a mobile
robot. The robot first learned to predict how its visual input changes under move-
ment commands. With this ability, two perceptual tasks could be solved: judging
the distance to an obstacle in front by ‘mentally’ simulating a movement toward
the obstacle, and recognizing a dead end by simulating either an obstacle-avoidance
algorithm or a recursive search for an exit. A simulated movement contained a se-
ries of prediction steps. In each step, a multi-layer perceptron anticipated the next
image, which, however, became increasingly noisy. To denoise an image, it was split
into patches, and each patch was projected onto a manifold obtained by model-
ing the density of the distribution of training patches with a mixture of Gaussian
functions.
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1 Introduction

Mammals learn to see by actively exploring their environment (Held and
Hein, 1963; Gregory, 1998). Actions like crawling, walking, turning, poking,
and grasping cause specific changes in the sensory signals of the actor, and
these causal relationships can be learned. Several authors suggested that these
learned relationships are the basis of certain perceptual qualities, like under-
standing the spatial arrangement of obstacles, the function of tools, and the
material properties of objects (Möller, 1996, 1999; Gross et al., 1999; O’Regan
and Noë, 2001; Grush, 2004; Hoffmann and Möller, 2004).

Psychological experiments indeed show that active movement alters or inter-
feres with perception (Held and Freedman, 1963; Prinz, 1997; Rossetti et al.,
1998), but psychology does not give an insight into the working machinery.
This gap may be filled by robot experiments, which offer the possibility to
study the interplay of action and perception since both the behavior and the
‘neural processing’ can be controlled experimentally (Webb, 2001; Verschure
et al., 2003).

Robot experiments already demonstrated that action can lead to object recog-
nition: objects could be separated from background if poked by a robotic arm
(Metta and Fitzpatrick, 2003), and a mobile robot detected the size of ob-
jects by circling around them (Pfeifer and Scheier, 1999, p. 407ff.). In these
studies, however, the robots need to be active during the perceptual task it-
self; humans can perceive passively. A solution to this direct dependence on
action may be sensorimotor anticipation. A so-called ‘forward model’ predicts
the sensory effects caused by motor commands (Wolpert et al., 1995). Thus,
overt motor commands can be replaced by covert ones (Hesslow, 2002). Such
a sensorimotor anticipation was successfully applied to reinforcement learning
(Sutton, 1992; Schaal, 1997) and to mobile-robot navigation (Tani, 1996; Tani
and Nolfi, 1999; Gross et al., 1999; Ziemke et al., 2005).

The work presented here combines these two approaches: action-based ob-
ject recognition and sensorimotor anticipation. A mobile robot with omni-
directional vision ‘mentally’ explored certain movement plans and tested their
effect on a single image from the robot’s camera. Specifically, by simulating
a forward movement, the robot judged the distance to an obstacle in front.
Furthermore, the robot decided if it faced a dead end or a passage by simu-
lating two alternative movement strategies: an obstacle-avoidance algorithm
and a recursive search for an exit. This work thus complements a thought ex-
periment in which Möller (1999) suggested that a dead end can be recognized
by anticipating the result of a simulated recursive search.

Perceptual judgment based on sensorimotor simulation has two main advan-
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tages. First, perception is directly linked to the observer’s body size and be-
havior. Distance, for example, is not a metrical measurement, but understood
as the time-to-contact given a certain velocity (Mallot et al., 1992). Further-
more, a dead end is understood as an arrangement of obstacles that cannot
be passed through (Möller, 1999). This understanding automatically considers
the observer’s physical properties: the obstacles may form a dead end only for
a robot of a certain size; a smaller robot would pass between all obstacles.
As second advantage, sensorimotor simulation provides a solution to view-
point invariance. With anticipation, a dead end is recognized depending on
its behavioral meaning and independent of the observer’s perspective (Möller,
1999).

Here, sensorimotor anticipation is used to make sense out of the sensory input,
which in the case of vision only provides a distorted map of the outside world;
for example, lines are generally not mapped onto lines on the retina (O’Regan
and Noë, 2001)—the same holds for our omni-directional vision system. Thus,
here, we want to demonstrate that the geometric properties of the outside
world can be understood using visuomotor anticipation, even if we predict
only the (almost) raw visual input, a gray-scaled image as seen through the
camera. Working with such an image representation avoids that the problem
of making sense out of the sensory input is partially solved by a human en-
gineer (Brooks, 1986), for example, by predicting object positions in image
coordinates. Working with images will further allow us to visually illustrate
the internal simulation.

Different from other robotic studies on sensorimotor anticipation, which were
limited to navigational tasks (Tani, 1996; Tani and Nolfi, 1999; Gross et al.,
1999; Ziemke et al., 2005), in the present study, a spatial arrangement is
understood by a passive observer. A dead end could be recognized by a robot
that stands still. Thus, the sensorimotor simulation must start from a single
image. Analyzing only a single image prohibits the use of flow fields as in Gross
et al. (1999) and the use of Elman recurrent neural networks for prediction
(Tani, 1996; Tani and Nolfi, 1999; Ziemke et al., 2005). Instead, here, given
only the current image, a forward model predicts the next image.

Images were predicted using a set of multi-layer perceptrons (MLP). Each
pixel was computed by one three-layer perceptron. The MLP output, however,
turned out to be noisy, and this noise accumulated catastrophically after just
a few prediction steps. Thus, after each step, an image had to be denoised.

Images are elements in a high-dimensional space—if represented by a vector
that contains each pixel’s color. Usually, however, the distribution of images is
locally restricted to a few dimensions. In our case, a small enough image patch
shows one or two obstacles that vary only in location and orientation. There-
fore, most of the noise can be removed by projecting the high-dimensional
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image patch onto a low-dimensional manifold that models the distribution of
training images (Mika et al., 1999; Shi et al., 2005). For learning a manifold,
we already have a training set, namely the images that were collected to train
the forward model.

To learn such a non-linear manifold, other studies used kernel principal com-
ponent analysis (Mika et al., 1999) and locally linear embedding (Shi et al.,
2005). These two methods, however, require all training patterns for denois-
ing a single image. Thus, they are too slow for our purpose. Therefore, here,
a denoising method is introduced in which the distribution of image patches
is modeled with a mixture of principal component analyzers (Tipping and
Bishop, 1999). The training patterns are then replaced by a set of spatially-
localized subspaces.

The remainder of this article is organized as follows. Section 2 explains how
perception through sensorimotor anticipation is realized in the robot. Section
3 describes the methods for learning to anticipate. Section 4 describes the
experiments on perceptual judgment and shows results. Section 5 contains the
discussion, and section 6 concludes the article.

2 Perception through sensorimotor anticipation

In the presented framework for perception through sensorimotor anticipation,
a robot understands a specific property of the surrounding by simulating a
specific movement plan. For example, in a previous study (Hoffmann and
Möller, 2004), a robot simulated a turning movement; and after observing that
the predicted visual input stayed constant, the robot deduced that it stood in
the center of a rotation-symmetric surrounding. There, the plan was a fixed
movement; but, generally, movement plans can be more flexible. In the present
article, a movement plan allows a limited number of motor commands at each
moment of the anticipation. The choice of motor commands depends on the
current estimate of the visual input. Thus, the overall procedure of perception
contains the following three parts: choosing an appropriate movement plan,
carrying out the simulation, and during this simulation, mapping the predicted
visual input onto a behavioral command.

A movement plan must be provided by the experimenter and depends on the
desired perceptual quality, but see section 5 for a biological interpretation.
The following three movement plans were simulated:

(1) To understand the distance to an obstacle, the robot moves forward uni-
formly until it bumps into the obstacle (see section 4.1).

(2) To understand if an arrangement of obstacles in front of the robot forms
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a dead end or a passage, the robot simulates an obstacle-avoidance algo-
rithm. The simulation halts when the front of the robot either is blocked
by obstacles or faces free space. Depending on these two situations, the
arrangement is recognized as a dead end or a passage (see section 4.2).

(3) For the same dead-end / passage classification task, the robot simulates
an alternative strategy, a recursive search for an exit. At each prediction
step, two movements are possible: a left turn or a right turn. Given this
limitation, the robot tries all movement combinations; it travels along
the branches of a search tree (Fig. 1). If the robot finds a path through
the obstacles, the arrangement is recognized as a passage, otherwise as a
dead end (see section 4.3).

Fig. 1. Recursive search for an exit. At each black dot, the lines show the two
movement alternatives for the robot. The first choice of movement is indicated by
the letter L or R. Unused alternatives are shown by dashed lines.

In each plan, a movement starts from a single image. Given this image and the
motor commands provided by the movement plan, a forward model predicts
the next image, which is denoised subsequently. These steps are repeated until
the movement plan gives a stop signal. Figure 2 shows the corresponding
information flow.

Fig. 2. Information flow for anticipation. Initially, a single camera image is given.
After pre-processing and guided by a movement plan, the image is manipulated in
a sequence of anticipation steps (solid lines). Each step consists of a forward model
and a denoising model.
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The movement commands chosen by the plan depend on the current mental
image. In the present study, for simplicity, the mapping from this image onto
the velocity commands is hard coded (in a more biologically-plausible version,
the robot may learn this association with a neural network—see section 5).
Within each image, the center of the robot is identified. From this center, the
distance to obstacles was computed in three sectors in front of the robot (see
Fig. 12 as an example). Depending on these three distances, the robot decides
to turn left, to turn right, or to stop, as specified by the movement plan.

3 Methods for learning to anticipate

The robot learns to anticipate by observing the consequences of its actions
within its environment. Here, learning comprises the following steps: collecting
training data, image processing, learning a forward model, and learning a
denoising model.

3.1 Collecting training data

To collect training data, the robot randomly explored its surroundings. A
Pioneer 2AT four-wheeled mobile robot collected data within four different
arrangements of obstacles, which were bricks wrapped in red paper (Fig. 3).
Motor commands are the wheel speeds, which were chosen independently for
the left and right side.

The random exploration was split into movement sequences. At the beginning
of each sequence, the robot randomly chose a velocity pair (vL, vR) from the
set { (20i, 20j) | i = −3,−2, . . . , 3; j = −3,−2, . . . , 3; |i| + |j| > 0 ∧ [ ij ≥
0 ∨ (|i| < 3 ∧ |j| < 3) ] } in the unit mm/sec (the last condition avoids fast
turns, for which the MLP failed to produce reliable predictions—see section
3.3). The chosen speed was maintained for a maximum of five 2-second in-
tervals. Such a sequence of constant velocity removes the dependence on the
acceleration. A sequence ended prematurely if the robot got to close to an
obstacle (Hoffmann and Möller (2004) describe the distance-detection mecha-
nism used here). Afterwards, a new pair of velocities was chosen as described
above.

For each obstacle arrangement, the robot moved for about 2 400 intervals, in
total 9 443. At the end of each interval, an image was taken by the robot’s
camera. No image was taken from the beginning of a sequence to discard the
effect of the first interval, which depends on acceleration. Two consecutive
images and the corresponding velocity make one training pattern. The above
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Fig. 3. Training environments. During training, the robot moved only within the
oval shaped border (gray curve).

choice of velocities omits the zero-velocity case. To include this case, training
patterns were added by using the first image of each constant-velocity sequence
as a start and end image of a movement interval. This inclusion improved the
performance of the network.

3.2 Image processing

An omni-directional vision system 2 provided the sensory input. The camera
images were processed to emphasize the obstacles and to reduce the number
of pixels (Fig. 4).

Fig. 4. Steps of image processing.

The processing comprised the following three steps. First, for each pixel, a gray
value was computed by evaluating R-(G+B)/2 (R, G, and B stand for the red,
green, and blue values). Second, the image was transformed such that the new

2 The vision system comprised an Accowle hyperbolic mirror (middle size, wide
view), a Pentax TS2V314A lens, and a DFK 4303/P camera.
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distance of a pixel to the image center was proportional to the square of the
original distance. This step counterbalanced an effect of the omni-directional
mirror: objects farther away shrink over-proportionally; thus, the prediction
of how an object moves within the camera image is much harder for larger
distances. Third, the image was blurred and sub-sampled down to 40 × 40
pixels. The gray value of a pixel was scaled to the interval [0, 1], with 0 being
white and 1 being black.

3.3 Learning a forward model

The forward model predicts an image given the current processed image and
the wheel velocities. Each image pixel was predicted using an MLP. For every
pixel, a separate network was used. The network’s input comprised the two
wheel velocities and an image region (11 × 11 pixels) centered around the
location of the output pixel (Fig. 5). When this region extended over the
margin of the image, the input neurons on the outside were set to zero. The
size of the input region limited the turning speed of the robot (see section
3.1), because a pixel is unpredictable if the movement of obstacles between
two consecutive images is larger then the radius of the pixel’s input region.

Fig. 5. Forward model. At step t + 1, a multi-layer perceptron predicts each pixel
(gray square) given its surrounding (11×11 pixels) at step t and a motor command
(vL, vR).

Each MLP has a simple three-layer structure with one hidden layer; the net-
work’s function f(x) is

f(x) = α +
nH∑
i=1

βi /

1 + exp

− nI∑
j=1

φijxj + θi

 . (1)
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The vector x contains the input values xj. The parameter nH is the number
of hidden neurons (nH = 15) and nI the number of input neurons (nI = 123).
The variables φij and θi are the weights and biases between input and hidden
layer, and βi and α are the weights and bias between hidden layer and output
neuron. All weights and biases were initialized randomly to lie within the
interval [−0.1, 0.1]. On the data collected and processed as described above,
the MLPs were trained using 2 000 epochs of resilient propagation (Riedmiller
and Braun, 1993).

3.4 Learning a denoising model

To denoise an image, it was split into overlapping patches. A grid of 10 × 10
tiles (each 4× 4 pixels large) was put on top of the image. A patch consists of
the area of a tile together with a two-pixels wide border (in total: d = 8 × 8
pixels). If the border reached out of the image, the affected pixels were set to
zero (white). Each patch was denoised separately (Fig. 6). The overlap avoided
discontinuities between tiles.

Fig. 6. Image denoising. (Left) Images are split into tiles, and each tile together with
its surrounding (region inside the dashed square) is denoised separately. (Right)
The distribution of such image patches (gray dots) is modeled by a mixture of
Gaussians (ellipses). For each Gaussian, a small number of principal components
spans a subspace (dashed lines). To denoise a patch, it is projected (dotted arrow)
onto the principal subspace of the closest ellipsoid.

The training patterns were extracted from the same images as used for the
forward-model learning, with the only difference that not all data were used.
Instead, the number N of training patterns varied between tile locations. For
some locations, most patches were almost white. Thus, to improve the com-
putation speed, patches in which all pixels had a gray-value below 0.2 were
removed from the training set.
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For each tile location, the training patterns were modeled by a mixture of
probabilistic principal component analyzers (Tipping and Bishop, 1999). The
probabilistic framework allows to compute multi-variate Gaussians by evalu-
ating only a few eigenvectors. Their number q, in the present article, was set
to 5 unless otherwise noted. The number m of Gaussians in the mixture was
set to N/100 + 1. Compared with Tipping and Bishop (1999), two improve-
ments were necessary (Hoffmann, 2005). First, the Gaussian centers ci were
initialized with the vector quantizer ‘Neural Gas’ (Martinetz et al., 1993). Af-
terwards, as usual, expectation and maximization (EM) steps alternate; here,
30 EM steps were computed. Second, to increase robustness, after each EM
step, a Gaussian was removed if its prior probability fell below (q + 2)/N ,
because q + 2 is the minimum number of data points required to compute q
principal components and the residual variance. In the case of removal, to keep
m constant, the Gaussian with the largest prior was split in two (Hoffmann,
2005).

Denoising a patch happened in two steps (Algorithm 1). First, from the mix-
ture model, the Gaussian j was chosen for which the noisy patch had the
smallest normalized Mahalanobis distance pj. Such a distance value was com-
puted from the eigenvectors Wj (a d×q matrix containing the eigenvectors in
its columns), the eigenvalues Λj (a diagonal matrix), and the residual variance
per dimension σ2

j as obtained from a spatially-localized probabilistic principal
component analysis, which is part of the above EM-algorithm (Tipping and
Bishop, 1999; Hoffmann et al., 2005). Second, the image patch was recon-
structed based on the principal components of the chosen local model (Fig. 6
and line 9 in Algorithm 1). Finally, the border part of a patch was removed
again, and the whole image was reconstructed from the tiles.

Algorithm 1 Image denoising

1: for each tile k do
2: from the image, extract the vector xk that contains the tile k and its

border
3: for i = 1 to m do
4: ξ = xk − ck,i

5: yi = WT
k,i ξ

6: pi = yT
i Λ−1

k,i yi + (ξTξ − yT
i yi)/σ

2
k,i + ln detΛk,i + (d− q) ln σ2

k,i

7: end for
8: j = arg mini pi

9: xD
k = Wk,jyj + ck,j

10: end for
11: remove the border from each patch xD

k and compose image from tiles

This denoising algorithm greatly reduced the noise in the predicted images
(Fig. 7). The computational complexity for one denoising step is O(nT 〈m〉 q d),
where nT is the number of tiles (nT = 100), and 〈m〉 is the average number
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of models in the mixture (〈m〉 = 63.3). In comparison, the complexity for
one forward-model prediction step is O(nP nH nI), where nP is the number
of pixels in the whole image (nP = 1600). For our parameters, these two
complexity values were of the same order: nT 〈m〉 q d ≈ 2∗106 and nP nH nI ≈
3 ∗ 106. In the experiments, both forward and denoising step took about 0.05
sec each (Athlon 1800+ CPU, implementation in C++ based on the Basic
Linear Algebra Subprograms—BLAS).

Fig. 7. Comparison of a forward prediction without (top row) and with (bottom
row) denoising. Starting with the images on the left, each following image is obtained
by predicting the sensory consequences of a turn with v = (25,−25).

4 Experiments

In the experiments, the acquired ability to anticipate is exploited for percep-
tual judgment. Three tasks were studied: distance estimation, recognizing a
dead end through a simulated obstacle avoidance, and recognizing a dead end
through a simulated recursive search.

4.1 Distance estimation

The robot has to estimate the distance to an obstacle in front. Figure 8 shows
the two setups used for testing. For each setup, the distance between obstacle
and robot was varied in steps of 5 cm either from 20 cm to 85 cm (setup
1) or from 22.5 cm to 82.5 cm (setup 2). For each distance, the robot simu-
lated a forward movement at a speed of 50 mm/sec. The simulation stopped
when within the predicted image the distance to the obstacle reached a pre-
defined threshold (7 pixels from the robot center). Figure 9 shows two sample
simulations.
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Fig. 8. Obstacle setups for distance estimation. The robot has to estimate the
distance to the obstacle in front (the one in the middle). The two other obstacles
only serve as a possible distraction.

Fig. 9. Prediction of a forward movement toward the obstacle in front. Each row
shows a simulation, which starts with the image on the left. The distance between
robot and obstacle is 60 cm in setup 1 and 57.5 cm in setup 2. A small circle marks
the center of the robot in each image. The simulation stops when part of an obstacle
reaches the circle segment.

For the quantitative results, the forward model was trained twice and the
mixture model three times. Thus, taken together, we have six training-run
combinations. Averages were taken over all six training runs.

The number of prediction steps required to reach an obstacle varied only
little between these training runs (Fig. 10). For each distance, apart from the
farthest, the difference between minimal and maximal number of prediction
steps was within one step.

The average number of prediction steps was up to a constant offset propor-
tional to the real distance (Fig. 10). Moreover, the slope of the linear increase
of steps versus real distance was close to the expected slope (if the robot would
actually move with the given speed).
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Fig. 10. Distance estimation. The graph shows the number of prediction steps
needed to reach the obstacle as a function of the obstacle’s distance. The average
number of steps and the min/max values over six training runs are shown. In the
absence of error bars, min and max values coincide. The dotted line shows the
expected increase given a forward speed of 50 mm/sec.

4.2 Recognizing a dead end through simulated obstacle avoidance

Facing an arrangement of obstacles, the robot simulated an obstacle avoidance
algorithm to recognize a dead end or a passage. This simulation was tested
on 16 setups (Fig. 11). In the obstacle avoidance algorithm, the choice of
velocities was derived from the mental image. Within such an image, the
distance from the robot center to an obstacle was computed in three sectors
(36◦ each, see Fig. 12). Depending on these distances, the robot either chose
new velocities for the next prediction step or stopped the simulation and
classified the arrangement. This choice was made according to the following
rules:

• If the distance in the front sector is 6 pixels or less, or in all three sectors 8
pixels or less, then stop and classify the arrangement as ‘dead end’.

• If the distance in the left sector is 7 pixels or less and smaller than in
the right sector, then make a left 3 turn, (vL, vR) = (−30, 30) in mm/sec
(analogue for the right side).

• If the distance in the left sector is between 8 and 11 pixels and smaller
than in the right sector, then turn leftward, (vL, vR) = (20, 50) in mm/sec

3 The image is mirror reversed.
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Fig. 11. Setups for the dead-end/ passage classification task. The dead ends are in
the first two columns. For each obstacle arrangement, two setups were used with
the robot facing in different directions.

(analogue for the right side).
• If the distance in all sectors is 20 pixels or more, then stop and classify the

arrangement as passage.

In all other cases, the robot moved forward with 60 mm/sec. These rules
restrict the movement of the robot such that in non of the test cases, the robot
could turn around and leave the obstacle arrangement through the entrance.
Figure 12 shows an example of a successful simulation run.

For the forward and denoising model, the same six training runs were tested
as in section 4.1. In four out of six runs, all 16 setups were classified correctly
(Fig. 13 illustrates the result of one of these four runs). In one run, one pas-
sage and in another run, four passages were misclassified. Figure 14 shows an
example from a failed classification trial; a new obstacle appeared out of noise,
transforming a passage into a dead end. New obstacles also appeared at a large
distance behind the robot, as in Fig. 12 and Fig. 17. This error, however, did
not disturb this anticipation. For all 16 setups, the robot computed on average
265 prediction steps (min: 228, max: 293).
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Fig. 12. Example of a simulated obstacle-avoidance algorithm (setup 16 in Fig.
11). The simulation starts from the top left. In each image, a small circle shows the
center of the robot. Three circle segments mark the distances to the obstacles in
front. Based on these distances, the velocity for the next time step is chosen (given
below each image in mm/sec).

Fig. 13. Final images of the simulated obstacle-avoidance algorithm for all setups
(numbered as in Fig. 11). Circles and circle segments are set as in Fig. 12.
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Fig. 14. Sequence showing how an obstacles emerges out of noise.

The proper function of the denoising algorithm depends on the number q
of eigenvectors (Fig. 15). For a q-value between 1 and 5, the classification
performance was good. However, if q = 0 (here, a noisy image patch was
projected onto the center of the nearest Gaussian), denoising was too strong:
obstacles disappeared occasionally or stood still at one position within the
image; thus, dead ends turned into passages (Fig. 15, left). On the other
hand, if q was too large, denoising was insufficient: new obstacles appeared
occasionally, turning passages into dead ends (Fig. 15, right).

Fig. 15. Classification errors over all dead ends (Left) and passages (Right) de-
pending on the number of principal components q used for denoising. The mean
errors over six training runs are shown. Error bars show min and max values.

4.3 Recognizing a dead end through simulated recursive search

As an alternative to the obstacle-avoidance algorithm, the robot simulated a
recursive search for an exit. At each branching point in the search, two ve-
locity combinations were possible: (vL, vR) = (20, 50) or (vL, vR) = (50, 20) in
mm/sec. These velocities forbade the robot to turn around and exit through
the entrance. Choosing just two combinations limits the exponential growth
of possibilities. To limit this growth further, at each branching point, two
subsequent prediction steps were computed; that is, the movement intervals
lasted 4 seconds, which reduced the required search depth (the number of de-
cisions along a movement). The direction that was chosen first at a branching
point depended on the search depth. With increasing depth, this direction
altered between left and right (Fig. 1). Thus, the robot tries first a zig-zag
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forward movement, which, in case of a passage, reduced the search time. Stop
conditions were derived from the mental image as in section 4.2.

By simulating a recursive search, the robot could detect dead ends and pas-
sages. Results were again averaged over the six training runs as in section 4.1.
The average classification error over all 16 setups was less than 1.0 using a
maximum search depth between 9 and 12 (Fig. 16). Outside this range, the
error increased. Figure 17 shows a sample movement found using a maximum
search depth of 10. With this search depth, the robot computed on average
8001 prediction steps for all 16 setups (min: 6236, max: 10446).

Fig. 16. Classification errors over all 16 setups depending on the maximum search
depth for the recursive search. The mean errors over six training runs are shown.
Error bars show min and max values.

Fig. 17. Sample result of an internal simulation obtained through a recursive search
(setup 16 in Fig. 11)—see also Fig. 12.
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5 Discussion

The experiments demonstrated that a spatial arrangement of obstacles can
be understood in its behavioral meaning based on sensorimotor anticipation.
A robot learned to anticipate by moving actively and observing the sensory
effect of its motor commands. Such a dependence of perception on active
movement explains a behavioral experiment by Held and Hein (1963): kittens
that grew up being only passively moved fail to avoid a steep cliff and thus do
not understand depth. Here, depth perception might result from a simulated
movement towards a target, as in the distance-estimation experiment (section
4.1).

The presented approach is biological relevant from the following perspective.
An animal model was presented, which does not correspond to any real ani-
mal, but faces problems also the nervous system of animals and humans has to
cope with: given the sensory input and the control over motor units, how can
we infer properties of the outside world? This article demonstrated that this
inference can be achieved based on visuomotor anticipation, which itself can be
based on a forward model that was learned in an unsupervised way. Neurophys-
iological and psychophysical studies indeed indicate that such internal models
exist in the brain (Kawato, 1999; Wolpert and Flanagan, 2001). The forward
model was trained using standard machine-learning techniques (multi-layer
perceptrons and Gaussian mixture models) rather than using biologically-
realistic networks, because the focus was on the mechanisms behind perceptual
understanding rather than on the learning techniques themselves.

Since the goal was to show how simulated action can lead to perceptual un-
derstanding, this work did not try to engineer the best possible solution for
dead-end detection. For example, a more reliable mechanism might use a laser
range sensor to compute the gap between obstacles and compare the gap size
with the robot’s size. From a biological perspective, however, this engineered
solution conceals the real challenge because the distance to obstacles and the
robot’s size are represented in some abstract measure, which is a priori inac-
cessible to an animal and which requires calibration.

Sensorimotor simulation provided an efficient way to classify an image; such a
classification would be difficult on a purely visual level. First, a teacher would
be required to label dead ends and passages. Second, on the pixel level, the
difference between two images showing a dead end and a passage could be
smaller than the difference between images of the same class.

A mentally simulated sequence of movements could be, in principal, directly
executed (without visual feedback). In reality, however, two technical prob-
lems arise. First, the predicted positions of the obstacles have small mistakes,
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which implies that also the predicted position of the robot is erroneous. This
error impairs action execution, but not perceptual judgment. Second, the com-
manded wheel velocity differs from the actually observed velocity (on the Pio-
neer 2AT, the velocity fluctuates around ±6 mm/s). Again, this error did not
disturb perception since an MLP averages over the fluctuations in the training
set. With this error, however, a lengthy movement sequence—like the one in
Fig. 12, which shows how to move through a passage—cannot be successfully
executed (Hoffmann and Möller, 2004). To work around these problems, the
robot may execute only the first few steps of a simulation, take a new picture,
run the simulation again, and so forth.

Prediction errors result mainly from the pixel-based sensory representation.
Predicting the whole image means predicting a position in a high-dimensional
space; and in each dimension, the position may be erroneous (Fig. 7). Here, this
error could be fixed by part with a denoising step. For more complex environ-
ments, however, particularly, for the visual input of mammals, such a sensory
representation is inefficient. A representation on a higher level is needed: for
example, a location coding in place cells, as found in the hippocampus of
mice, could be suitable for the spatial-perception tasks. In the present study,
the pixel-based representation was chosen to demonstrate that sensorimotor
anticipation can lead to an understanding of the structure behind the sensory
input (a specifically engineered representation would therefore weaken this
demonstration).

A dead end could be recognized by two different movement strategies: search
recursively for an exit and avoid obstacles. The recursive search has the ad-
vantage that the choice of velocities does not depend on the distance to ob-
stacles apart from the stop conditions. This independence saves parameters
that need to be tuned in the obstacle-avoidance algorithm. Furthermore, a
recursive search would also work if a dead end has a branching point. Dis-
advantages, however, are the dependence on the maximal search depth (Fig.
16) and the computational complexity. First, the lower bound on the maximal
search depth depends on the length of a passage, and the upper bound depends
on prediction errors: with increasing number of movement combinations also
the chance of a failure (obstacle removal or emerging) increases. Second, the
number of forward prediction steps was on average about 30 times higher than
for obstacle avoidance. This imbalance makes the recursive search biologically
implausible.

The mapping from a mental image onto the velocity commands may be learned
beforehand; that is, the robot autonomously learns to avoid obstacles, and
engineered rules as in section 4.2 can be omitted. To learn this mapping, the
robot might move randomly and observe the visual effect of collisions with
obstacles. Tactile sensors could detect these collisions. An example for carrying
out such a learning presented Pfeifer and Scheier (1999): a robot learns to avoid
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obstacles based on collision and proximity sensors and a simple neural network
with Hebbian learning. Alternatively, a genetic algorithm may find a mapping
by minimizing the robot’s path length through a passage. These additions
would replace the hard-wired mapping from image to motor commands and
lead to a more biologically-plausible model.

Distances were estimated by simulating a movement towards an obstacle and
counting the movement steps. In setup 2, for larger distances, one more pre-
diction step was required than expected (Fig. 10). The reason might be the
lying obstacle in setup 2 (Fig. 8). This obstacle appears to be smaller than
a standing one within the camera image (Fig. 9). When moving towards ob-
stacles, the learned mapping of the forward model has two effects: obstacles
grow bigger (see the distant obstacles in Fig. 12) and move closer to the robot
(Fig. 9). For large distances, the lying obstacle could not move closer during
one prediction step because the image resolution was too low. Thus, to judge
the distance, the robot has to use also the obstacle’s apparent size. Since we
work only with a two-dimensional projection of the three-dimensional world,
the robot faces a size-distance ambiguity, and the lying obstacle appeared to
be farther away than it actually was.

A perceptual quality was directly linked to a specific movement plan: for
example, to understand a dead end, the robot needs to simulate an obstacle-
avoidance algorithm. Here, no mechanism was presented on how to obtain an
appropriate movement plan in a given situation. The execution of a move-
ment plan may be triggered by other brain processes, which are influenced
by action goals or sensory input, as the following two examples illustrate. (1)
An animal wants to reach a distant food source. The goal to reach the food
triggers simulations of the obstacle-avoidance algorithm. (2) We want to un-
derstand the function of a cup. The handle of a cup associates a grasping
posture (Hoffmann et al., 2005). This grasping posture starts the simulation
of various manipulations (for example, tilting and turning). Here, a cup might
be understood based on these simulated manipulations.

Sensorimotor simulation appears to be well suited to extract geometric prop-
erties from the outside world; apart from dead ends, also symmetry can be
understood (O’Regan and Noë, 2001; Philipona et al., 2004; Hoffmann and
Möller, 2004). Not all kinds of perception, however, can be based on sen-
sorimotor simulation. For example, in humans, information processing in an
animal/non-animal classification task is too fast (150 ms) for recurrent pro-
cesses (Thorpe et al., 1996), which are needed for mental simulation.

We do not know if the brain actually uses sensorimotor anticipation for percep-
tual judgment. Since sensorimotor simulation consumes a lot of time, a critical
test could be to measure the processing speed of certain brain functions and
the processing speed for perceptual judgment. If such a measurement would
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rule out that perception is directly resulting from sensorimotor anticipation,
it could still be the means to learn certain perceptual qualities.

6 Conclusions

This article presented experiments with a visually-guided mobile robot that
carried out perceptual judgment based on visuomotor anticipation. The robot
learned a forward model by moving randomly within arrangements of obsta-
cles and by observing the changing visual input. For perceptual judgment,
the robot stood still, observed a single image, and internally simulated the
changing images given a sequence of movement commands as specified by a
certain movement plan. With this simulation, the robot judged the distance
to an obstacle in front and recognized in an arrangement of obstacles either
a dead end or a passage. Thus, the experiments demonstrated that sensori-
motor simulation makes the geometry of the outside world accessible to an
observer—see also O’Regan and Noë (2001); Philipona et al. (2004).

To my knowledge, the presented article is the first, in which a real mobile robot
infers properties as complex as the state ‘dead end’ or ‘passage’ based solely
on a single image and a previously learned forward model. Thus, this work is
significant for the understanding of how cognition emerges from sensorimotor
models.

An image was predicted by computing each pixel with a multi-layer perceptron
given as input the previous image and a movement command. This prediction,
however, was noisy. Thus, a denoising method was introduced that greatly
reduced the noise within an image (Fig. 7). This method described image
patches with a Gaussian mixture model and mapped noisy patches onto the
corresponding mixture of principal subspaces. Such a denoising method might
be also helpful for other applications in which noise-free image patches are
restricted to a low-dimensional non-linear manifold.

The mobile-robot experiment verified a thought experiment by Möller (1999):
a robot can indeed detect a dead end through sensorimotor anticipation. In
addition to the thought experiment, the robot study shows two points. First,
sensorimotor anticipation still needs a suitable sensory representation to be
computationally robust. A pixel-based representation is vulnerable to noise.
Environments that are more complex than the one presented here require a
higher-level dimension-reduced representation. Second, a real robot requires a
specific simulated movement plan, and experiments show which plan is more
efficient. A recursive search, as suggested by Möller (1999), is computation-
ally expensive and prone to prediction errors for large search depths. Thus,
sensorimotor anticipation by itself cannot generate a behavior from sensory
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input by testing all possible movement variants. Instead, other processes need
to trigger a suitable movement plan like, for example, avoiding obstacles.

Future work will study different sensory representations and will extend the
anticipation approach to object manipulation using a robotic arm. Thus, ob-
jects or object properties will be recognized based on sensorimotor simulation.
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