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Abstract— We present a novel paradigm for pattern match-
ing. Our method provides a means to search a continuous data
stream for exact matches with a priori stored data sequences.
At heart, we use a neural network with input and output
layers and variable connections in between. The input layer
has one neuron for each possible character or number in the
data stream, and the output layer has one neuron for each
stored pattern. The novelty of the network is that the delays
of the connections from input to output layer are optimized to
match the temporal occurrence of an input character within
a stored sequence. Thus, the polychronous activation of input
neurons results in activating an output neuron that indicates
detection of a stored pattern. For data streams that have a large
alphabet, the connectivity in our network is very sparse and the
number of computational steps small: in this case, our method
outperforms by a factor 2 deterministic finite state machines,
which have been the state of the art for pattern matching for
more than 30 years.

I. INTRODUCTION

Our goal is to improve the speed of pattern matching in
digital data. Rapid search is needed in large data sets, like
video and audio streams and internet traffic. For example,
for intrusion detection in internet traffic, the state of the art
is not fast enough to search for all known attack signatures
at modern day internet router speeds.

For exact pattern matching, previous approaches focused
on finding a string in a text. If wildcards are not allowed,
then the Boyer-Moore (BM) algorithm [1] implemented on
a standard serial computer is still the state of the art [2]. Its
worst case computational complexity per input character is
O(1). With wildcards, however, BM needs to be modified and
becomes inefficient. An alternative are finite state machines
[3], [4], which can deal with wildcards in the query string.
The deterministic finite automaton (DFA) computes only one
state transition per input character; thus, its computational
complexity is O(1). Theoretically, the speed is independent of
pattern length and alphabet size [4]. A disadvantage of DFA
is that it requires an additional cost for building the state-
transition table, which shows the state transitions depending
on the input character, in preparation for the search. A state-
transition table must be computed for every stored pattern
that is to be matched against an input stream.

In this article, we present a new type of network that
sets connection delays optimally for pattern matching. This
paradigm is a shift from the common practice in which con-
nection delays are either uniform across connections or set
at random a priori (see liquid state machines [5]). Moreover,
we optimized the network to allow fast computation. Apart
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from keeping the number of computations at a minimum, we
further require only integer additions.

Particularly, the advantage of our novel method is an
improvement in recognition speed if the input characters
come from a large set (large alphabet). Large alphabets are
in use, e.g., in 16-Bit Unicode, image data, computational
biology [6], and in languages like Chinese and Japanese.
For alphabets with more than 1000 characters, we found
empirically for an implementation on a serial computer
a more than two-fold improvement of recognition speed
over the state of the art. Moreover, our network is suitable
to be implemented in neural hardware, which results in
higher speeds compared to a serial-computer implementation.
Compared to state of the art pattern matching methods
(Boyer-Moore algorithm and deterministic finite automata),
our method has two further advantages: it does not require
an upfront computational cost to compute shift or state-
transition tables, and it can recognize partially-completed
patterns as well (as an option).

The remainder of this article is organized as follows.
Section II provides the background for string search and
our network design. Section III explains our novel network
design and presents its capabilities. Section IV describes
our implementation of this network. Section V shows a
comparison with other methods. Section VI demonstrates in
simulation the advantage of our new method over the state
of the art in pattern matching. Finally, Section VII concludes
the article.

II. BACKGROUND

A. String searching algorithms

String search algorithms find matches of query strings
within a text or input stream. The naive approach is to
align the whole query string with the text starting from the
beginning of the text and match each character in the query
string with the corresponding character in the text. Then, the
query string is shifted by one character and the matching
process is repeated. This approach will find all matches in
the text. However, the computational complexity is O(kn),
where k is query size and n is the text size (number of
characters).

A more efficient approach is to shift the query string by &
characters if a character is encountered that is absent in the
query pattern, since any intermediate shifts are guaranteed
to result in a mismatch with the query. This strategy is
implemented in the Boyer Moore algorithm, which is still the
gold standard for exact string matching without wildcards.
The average computational complexity is O(n/k) if the al-
phabet is sufficiently large, and the worst case computational



complexity is O(n). However, the shift strategy fails if the
query string contains wildcards.

For patterns with wildcards, currently, the state of the
art are deterministic finite automata, particularly, the Aho-
Corasick string matching algorithm [7], which is O(n). This
algorithm has been the standard method for more than 30
years. Finite automata search for strings by transitioning
between states; this transition is regulated by the current input
character. As preparation, a query string must be converted
into a state machine, which can be time consuming. The
Aho-Corasick algorithm extends the idea of finite automata
to building a state machine that can search through several
query patterns simultaneously.

B. Related work in neural networks

Formally, our novel network is a special case of time-delay
neural networks (TDNN) [8]. TDNNSs are, however, concep-
tually different; instead of setting delays, in a TDNN the
weight matrix of neural connections is expanded to include
connections from previous time steps. Another instantiation
of using delayed input can be found in recurrent neural
networks, as, e.g., in the Elman network [9], which keeps
a memory of previous hidden states.

In the context of recurrent networks, Izhikevich introduced
the concept of polychronization [10]. That is, time-shifted
instead of simultaneous firing is critical for activating re-
ceiving neurons, because in real networks connection delays
are heterogeneous. In general, several neurons may be ac-
tivated by a time-shifted input pattern, and these neurons
were called a polychronous group. Izhikevich demonstrated
the phenomenon of polychronization in neural networks of
spiking neurons that were described with several differential
equations. Later, Paugam et al demonstrated a supervised
learning approach to classify temporal patterns using a poly-
chronous network [11]. For this classification, the authors
learned the delays between a layer of recurrently connected
neurons and an output layer. This work is one of the few
where delays were learned and not just set a priori.

All of the above neural models are computationally ex-
pensive. As a simpler alternative, Maier et al introduced the
“minimal model” [12], which could exhibit polychronous
activity without the complications of integrating differential
equations. Our network is based on the neuron model from
this minimal model.

ITI. SETTING DELAYS FOR PATTERN MATCHING

We introduce the first network in which delays are set
to achieve exact pattern matching. Here, a pattern is a time
series of neural activations. The following sections describe
the graphic illustration of connection delays, polychronous
activation, pattern storage and recall, storing multiple pat-
terns, absence of false positives, partially complete patterns,
and wildcards.

A. Connection delays

Central to our approach is the setting of connection delays
to achieve desired network functions. Throughout this article,

we will use integer delays. To illustrate the delays between
neurons graphically, we reproduce all neurons for each time
step (Fig 1). In the resulting plot, we can show a connection
and its delay with a single arrow. Our network is defined
through its neurons, the connections between them, and the
delays for each connection.
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Fig. 1. A neural network is represented in a time-evolution diagram to

graphically show connection delays. The figure shows an example of a two-
time-step delay between neurons 1 and 2. The time-evolution diagram shows
temporal connections between neurons (Y axis) at different time steps (X
axis).

B. Polychronous activation

We use a simple integrate and fire neural model. If a
neuron fires, it sends a spike with value +1 through all its
outgoing connections. This spike is present only at a specific
time step. Delayed through the connections, the spikes arrive
at various time points at the receiving neurons. All incoming
spikes that arrive at a receiving neuron at each time step are
integrated and result at an activation level, a, which equals
the number of incoming spikes at the specific time step,

a(t) = si(t — At;), (1)
K3
where s; is either 1 or O depending on the activity of the
transmitting neuron 4, and At; is the connection delay. If
this activation level reaches a threshold, the receiving neuron
fires. Each neuron may have its own threshold value.

The delays may vary between connections. Thus, to acti-
vate a receiving neuron, the transmitting neurons should fire
asynchronously; they need to fire in a specific sequence that
matches the delays in the connections (Fig. 2). Izhikevich
termed this property polychronous activation [10].
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Fig. 2. Illustration of synchronous incoming spikes at the receiving output
neuron (#4) when neurons 1 and 2 are activated in turn. Arrows show
delayed transmissions through the neural connections.



C. Pattern storage and recall

To store a string of characters, we represent it as a time
sequence of neural activations. Each character corresponds
to an input neuron. Thus, the pattern is given as

P: {(Sl,tl),(Sg,tg),...,(sk,tk)}, (2)

where s; is the input neuron, t; the time of activation of
this neuron, and & the number of characters in the pattern.
To store this pattern, we first compute the time gap between
each character in the pattern and the pattern’s last character,

Aty =t —t;, €))

This time gap is then stored as a delay in the network for
the connection between the corresponding input neuron and
a new output neuron that is assigned for this pattern (Figure
3 and Figure 4). For each character, a new connection is
formed. Multiple connections of variable delays are possible
between two neurons. A connection is only created when
a new pattern is stored. Thus, for large alphabets (many
input neurons) the connectivity is sparse. Apart from building
connections, we set the threshold of the output neuron equal
to the pattern size k.
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Fig. 3. Example of storing the pattern (1, 2, 1) into the network. Three
connections are added to the network.

This choice of neural delays and weights ensures that all
occurrences of a pattern in an input stream are detected with
the above operation and no false positives are obtained (see
Section III-E). The flow for storing a pattern is shown in Fig.
4.

Initialize i =1, increment j, and create output
neuron o;

Pattern
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Read character n;
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Fig. 4. Process flow for storing a pattern.

A benefit of storing a string as delayed connections in
our network is that wildcards of definite length are automat-
ically taken care of, without increasing the computational

complexity. Figure 5 shows an example of storing a pattern
with a single character wildcard “?”. Such a wildcard is
simply represented as a time gap, i.e., extra delays for
the connections. For storing consecutive “?” wildcards, i.e.,
wildcards of a given length, the delays can be adjusted
accordingly.
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Fig. 5. Example of storing a pattern with “?” wildcard (3, 2, ?, 1). Any
neuron activated at time step 3 would be ignored.
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D. Storing multiple patterns in one network

Multiple patterns can be stored in the same network. For
each new pattern, a new output neuron is created and the
above storage procedure repeated. The network is capable of
handling overlapping patterns, see Fig. 6 as an example. In
recall, multiple patterns can be detected simultaneously.
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Fig. 6. Example of delayed connections of two stored patterns

E. Uniqueness of the pattern recall

Our network detects all stored patterns in an input stream
and does not produce any false positive, as we show below.
Patterns of only a single character can be stored even though
only two neurons are connected to each other (Fig. 7). Here,
between the two neurons, multiple connections exist with
different time delays.

Lemma: Our network detects all occurrences of a pattern
within an input stream without producing any false positive.
Proof: By construction all occurrences of a pattern are
detected. To prove that there are no false positives, we first
note that the threshold for activation equals the number of
connections to one output neuron. Moreover, one connection
activates the output neuron only at one time step. Thus, all
connections have to be active to activate the output neuron.
To activate all connections the input neurons have to fire at
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Fig. 7. Network connections and activations for a pattern that repeats a

character multiple times, here (1, 1, 1). Multiple connections are formed
between the same input and output neurons. However, only when the
complete pattern is observed then the threshold for detection is reached.

the time points as specified in the stored pattern. Therefore,
an output neuron cannot become active if less than the
complete pattern is present. Thus, false positives are absent.

FE. Partially complete patterns

The above method can be extended to detect partially
complete patterns. Here, the threshold at an output neuron
is reduced to a value smaller than k, allowing the network
to detect partial matches with stored patterns. The value of
the threshold regulates the completeness of the match. For
example, if for a pattern of four characters a threshold of 2
is chosen, partial patterns are detected that consist of only
two of the four characters that occur at the appropriate time
points. This capability for partial matches allows us to apply
our method to noisy patterns; noise in the input may activate
the wrong neurons and therefore decrease the completeness
of a pattern.

G. Storing patterns with “*” wildcards

As shown before, the network can deal with the “?”
wildcard in a straight forward way. Including the multiple-
character “*” wildcard, however, requires a slight modifi-
cation. In this modification, we add an intermediate layer
of neurons (Fig. 8), one neuron for each wildcard in a
pattern. These intermediate neurons either project to another
intermediate neuron if another wildcard is present or project
onto the output neuron (dashed arrows show projections in
Fig. 8). In both cases, the receiving neuron is activated over
several time steps. Thus, this neuron remains in an excited
state; i.e., only the remaining pattern is required to activate
the neuron (see also Section IV).

The threshold of an intermediate neuron equals the number
of characters (not counting wildcards) up to the occurrence
of the corresponding “*” wildcard. Thus, an intermediate
neuron detects the partial pattern that is complete up to the
“*” wildcard. When an intermediate neuron fires, it activates
its receiving neuron by the same amount as the threshold
of the intermediate neuron. Thus, the receiving neuron is
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Fig. 8. Example for processing a pattern that includes a star wildcard (1, 4,
7, 2, *, 2). The partial pattern before the “*” projects onto an intermediate
neuron (5), which in turn projects onto the output neuron. The intermediate
neuron activates the output neuron over several time steps (dashed arrows).

excited equivalent to the reception of the partial pattern. An
output neuron, as before, has a threshold equal to the size
k of the complete pattern (not counting wildcards) and thus
shows the same behavior as discussed before. Alternatively,
as mentioned above, also here we could choose a lower
threshold to allow detection of partially complete patterns.

IV. IMPLEMENTATION

To implement the network on a serial computer, we chose
the following steps. First, we build lists of connections. For
each neuron, we build an array for the connections. A new
connection is added for each character in a pattern. Here,
we need to store only those input neurons that are actually
used in a pattern. The connectivity array contains for each
connection the identification number of the target neuron and
the delay. The number of connections per pattern equals the
number k of characters in a pattern (not counting wildcards).

Second, for the output neurons, we need to store a matrix
that captures their activation over time: one dimension for
the output neuron and one dimension for time. The stored
patterns will have a maximum length (for the “*” wildcard
we need to set a maximum length). Thus, we can make
the time dimension of our matrix periodic, and the matrix
size in this dimension is the maximum duration of a pattern,
tmax. That is, at each time step ¢, the time dimension of
the matrix covers the steps ¢ to ¢t 4+ tmax — 1. The periodic
boundaries require clearing the matrix contents to avoid
spurious activations. After each input character is read into
the network, the previous neural activations at time ¢ are
cleared, and then, ¢ is incremented modulo tmax. As result,
the space complexity (number of integer values) per stored
pattern equals tmax for the activation matrix plus 2 times
the average k for the connectivity array.

In each computation cycle, an input neuron projects to all
output neurons to which it is connected. For each connection,
we need to look up the delay in the connectivity array.
Using this delay, we shift to the corresponding entry in the
activation matrix and increment this entry by 1. For the “*”
wildcard, the intermediate neurons are part of the activation



matrix. If an intermediate neuron fires, it activates the row
in the activation matrix that corresponds to the receiving
neuron. The whole row is set to the value of the threshold
of the intermediate neuron.

All required operations are either integer additions or
comparisons. Thus, our method can be implemented very
efficiently. The estimated computational complexity per pat-
tern and input character equals 1 + 3k/N additions, where
N is the alphabet size. Here, k/N is the average number
of connections per input neuron. For clearing the activation
matrix, we need one addition, and for each connection, we
need three additions: one to look up the delay, one to look
up the entry in the activation matrix, and one to increment
the entry in the activation matrix.

On a serial computer, our method’s computation time is
linear in the number of stored patterns. However, we could
improve speed through parallelization, which could be done
straightforwardly, e.g., by splitting patterns over different
processors, by distributing output neurons, connections to
these neurons, and their entries in the activation matrix.
Since each processor requires only simple computations,
this process is very suitable for graphics chips (GPUs).
In addition, our network could be implemented on special
neural hardware, reducing the cost of processing an input
character to a single clock cycle.

V. COMPARISON WITH OTHER METHODS

Our method has several advantages over the state of the art
in string matching, which are deterministic finite automata
(DFA) and the Boyer Moore algorithm, or their variants.
These advantages are the inclusion of wildcards (“?” and
“*#7) without significantly increasing the computational com-
plexity, the capability to detect partially complete patterns,
and a high detection speed for large alphabets.

To search for a single pattern, our method has a compu-
tational advantage over both DFA and Boyer Moore if the
alphabet size is large. Figure 9 shows the parameter domains
for which each method has an advantage over the other
methods. This plot is based on the average computational
complexity per input character and stored pattern. This
complexity is O(k/N) for our method, O(1/k) for Boyer
Moore, and O(1) for DFA.

When storing more patterns, the computational complexity
of our method is worse than for the Aho-Chorasick algo-
rithm, whose computational complexity is in principal invari-
ant to the number of stored patterns. However, as mentioned
above, we can gain speed through parallelization or imple-
mentation in neural hardware. Such implementations will
likely not benefit deterministic finite automata. Parallelization
does not improve the speed of Aho-Chorasick. A further
disadvantage of DFA is that with increasing alphabet size,
number of patterns, and inclusion of wildcards, the space
complexity may explode, which leads to a sharp increase
in computational time. Table I summarizes the comparison
between our method and Aho-Chorasick.
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Fig. 9. Parameter domains (in space of alphabet and pattern size) for which
Boyer Moore (BM), deterministic finite automata (DFA), or our network
have an advantage in computation speed. Boyer Moore cannot deal with
wildcards; in that case, DFA is the only alternative.

TABLE I
COMPARISON OF OUR NOVEL NETWORK WITH THE AHO-CHORASICK
ALGORITHM FOR PATTERN MATCHING

Property || Aho-Chorasick | Our network
Computational 2 additions 1+ 3k/N additions
cost per input character per input character
and stored pattern
Wildcards Large increase No significant additional
in space complexity | cost
Parallelization Does not improve Benefits storage of

above comp. cost multiple patterns
High, especially Low

if wildcards
Not possible

Comp. cost of
pattern storage
Detect partial

patterns

Possible

VI. SIMULATION RESULTS

We simulated our novel neural network to confirm its
function and speed advantages. As test sets, we randomly
generated input streams of one million characters and em-
bedded 100 randomly generated patterns in each input stream
at random locations. Our streams did include overlapping
patterns. Each pattern contained five characters and had a
total duration of ten time steps, i.e., contained five “?”
wildcards. We generated ten of these input streams and tested
on them a deterministic finite automata (DFA) and our novel
method.

As speed measure we evaluated the average computation
time per stored pattern. We stored all 100 patterns that
were distributed in the test sets into our network and build
transition tables for the DFA for each pattern. Here, we ran
100 DFAs, i.e., 100 transition tables, in parallel. Thus, the
obtained speed corresponds to the computational cost for
searching for a single pattern (as in Table I). In measuring the
speed of the search, we excluded any pre-processing stage
like building a state-transition table for DFA (which highly
depends on implementation). Including this pre-processing
stage would be of disadvantage for DFA.



Our network did correctly detect all stored patterns within
the input stream and did not produce any false positives. As
for the speed, our novel method outperformed DFA for large
alphabets (2x for alphabet size above 1000, see Fig. 10). For
even larger alphabets, we found in our implementation of
DFA that the computational time exploded, while with our
novel network, the computational time stayed constant (here,
we found a 10x improvement in speed for an alphabet size of
two million). But the explosion of computational speed for
DFA may depend on our implementation; therefore, we did
not include it in our figure. This explosion does, however,
demonstrate a common problem with state machines: they
need to be sufficiently small to be efficient.
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Fig. 10. Comparison of the average computation time per pattern between
our network and DFA. In each trial, we searched for all occurrences of a ten
character string that includes five wildcards in a 1 Million character random
text. The dashed curves show the theoretic values.

We compared our experimental results with our theoretical
estimate of the computational cost (first row of Table I). To
compare with the data, the cost values in the table were
scaled such that the theoretical speed of Aho-Chorasick
matched the average experimental speed of our DFA imple-
mentation. Experimental and theoretical results were in good
agreement.

VII. CONCLUSIONS

We presented a novel paradigm for pattern matching. In
contrast to prior work on neural networks, we set connection
delays of a neural network to achieve a desired function.
Herein, we exploited the property of polychronous firing for
detecting a time sequence. As a result, we developed an algo-
rithm that outperforms a 40-year-old established standard for
pattern matching in the case of large alphabets. In addition,
our method has several desired properties, particularly, the
capability to deal with wildcards, to detect partially complete
patterns, and to reduce the required computations to integer
additions, i.e., no multiplications. The detection of partially
complete patterns is beneficial if patterns are noisy, and a
tolerance for detection is required. Since pattern matching
is widespread, our novel method has the potential to find
many applications, particularly, in areas like cybersecurity.
Moreover, the paradigm of explicitly setting connection
delays opens up new areas for algorithm development.
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