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Biologically-inspired image
processing for machine grasping
Heiko Hoffmann

A primary-visual-cortex-based system allows a robot hand to quickly
orient itself and pick up the objects it sees.

Visual processing in mammals is adapted to their behavioral
needs: likewise, in visually-guided robots, image processing
needs to be suitable for a desired behavior. Thus, the function of
the mammalian brain may be a good guideline for choosing the
right image-processing techniques for machines. In our work,
we make robots learn through experience and thereby study
which learning and image-processing techniques lead to a good
performance for a given task.

Here, we describe a study in which our goal was to make a
robot arm grasp an object presented visually.1 The robot learned
to associate the image of an object with an arm posture suit-
able for grasping. Learning an association means that there are
no world coordinates and there is no tedious calibration of the
vision system, instead, the robot learns by randomly explor-
ing different arm postures and by observing the appearance
of objects put on a table. Though the emphasis of our work
is on learning techniques, here we will focus on the image
processing.

We used a robot arm with six joints and a gripper: the vision
system was a stereo camera head mounted on a pan-tilt unit (see
Figure 1). This setup was located behind a table, which was the
operational space and which was visible to the cameras. In train-
ing, the robot placed a red brick on the table in random positions
and, for each position, recorded an image of the scene after re-
moving the arm. Thus, the training set contains corresponding
pairs of grasping postures and object images.

An image can be interpreted as a point in a high-dimensional
space (with the number of dimensions equal to the number
of pixels). A mapping from such a space to an arm posture
suffers from the so-called ‘curse of dimensionality ‘: the dis-
tance between pair-wise different images is almost constant, and
the orientation of the target gets lost under the dominance of
the positional information.2 Therefore, the image must be pre-
processed.

Figure 1. Shown is the information flow in the grasping task. The pro-
cessing of the camera image is split into two parts. First, to extract
position information, the image is blurred and sub-sampled. Second,
to extract orientation information, four different compass filters (direc-
tional edge filters) extract edges in different directions. The sum of the
white pixels in each of the four filtered images results in a histogram
of edge distribution. This histogram, together with the blurred image,
is associated with an arm posture that enables the robot to grasp the
observed object.

The processing technique that was eventually successful was
inspired by the function of the visual cortex. The image process-
ing was split into two parts: one for the object ‘s location and
one for its orientation (see Figure 1). To decode the location, the
image was first blurred and sub-sampled. Since here the target
(the brick) was almost point-like within the camera image, the
blurred image is like a population code of the brick ‘s position.
In a population code, many neurons carry information about a
parameter: such a code for the retinal location of a stimulus ex-
ists also in the primary visual cortex.3

To decode the orientation, image filters were used to extract
edges in different directions: for each, we counted the edge pix-
els within the image. This sum was invariant of the brick ‘s po-
sition and was a measure of how close the brick was to a given
orientation. Position invariance and orientation tuning are also
properties of V1 complex cells.4
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Figure 2. Pattern association. Training patterns lie in the product space
of arm posture and visual information. The density of the pattern ‘s
distribution is modeled by a mixture of Gaussian functions (ellipses
are iso-density curves). To map the visual information onto an arm
posture, we define the output space as a constrained space anchored at
the input. On this subspace, the highest local density gives the desired
output.

The resulting visual information could be used to first learn
and then to recall the association with an appropriate arm pos-
ture for grasping (Figure 2). Specifically, the decomposition of
the image processing into two parts and the use of popula-
tion codes kept the grasping errors low.1, 2 This robot experi-
ment demonstrated that brain functions can provide guidelines
for robotic control, but also robots can help us to understand
the brain. This is done by first demonstrating that certain (of-
ten hypothetical) functions actually work and then showing the
advantages of certain data-processing techniques in a behavioral
context.
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