
An Extension of Neural Gas to Local PCA

Ralf Möller, Heiko Hoffmann

Cognitive Robotics, Max Planck Institute for Psychological Research,

Amalienstr. 33, D-80799 Munich, Germany

Abstract

We suggest an extension of the Neural Gas vector quantization method to local
principal component analysis. The distance measure for the competition between
local units combines a normalized Mahalanobis distance in the principal subspace
and the squared reconstruction error, with the weighting of both measures depend-
ing on the residual variance in the minor subspace. A recursive least squares method
performs the local principal component analysis. The method is tested on synthetic
two- and three-dimensional data and on the recognition of handwritten digits.

Key words: unsupervised learning, local principal component analysis, vector
quantization, Neural Gas, handwritten digit recognition

1 Introduction

Principal component analysis (PCA) is a method for dimension reduction of
multivariate data and a standard tool for data compression, pattern recogni-
tion, and statistical analysis. Through PCA, a high-dimensional pattern space
is approximated by a subspace of lower dimension which is spanned by the first
principal eigenvectors of the data covariance matrix. In that way, low-variance
components of the data distribution are eliminated, resulting in a more parsi-
monious description. Not only can single data points be represented by fewer
components under minimal error in the reconstruction of the original data,
but the entire distribution can be represented by the principal eigenvectors
and their corresponding eigenvalues (variance in the eigendirection).

However, PCA is a linear technique where data points are described by their
projections onto a hyperplane embedded in the original data space. Therefore,

1 E-mail addresses: moeller@psy.mpg.de, hoffmann@psy.mpg.de

Preprint submitted to Elsevier Science 22 May 2003

globally applying PCA to a distribution will be inefficient, if the components
have non-linear dependencies [1]. Several extensions to PCA have been sug-
gested to overcome this problem, e.g. non-linear expansion and principal curves
(overviews: [1; 2]). An alternative to these global non-linear approaches are
local PCA 2 methods, where a distribution is represented by a collection of
locally linear descriptions, the latter being obtained by applying PCA to a
local region of the data distribution. Thus, local PCA can be used to produce
compact models of non-linear data distributions [2].

The model of a distribution can be applied for detection, classification, com-
pletion of partially defined data, and data compression. In detection, samples
from a data stream are characterized as being part of the modeled distribu-
tion or not (e.g. face detection in images [4]). In classification, detection is
performed with respect to a number of different modeled distributions (e.g.
handwritten digit recognition [5]). In completion of partially defined samples,
some components of the sample vector are specified (input variables), and the
remaining components (output variables) are determined in a way that the
resulting vector would with high probability be part of the modeled distri-
bution. In compression, each sample would be characterized by the index of
the sub-model and by the coordinates within the corresponding local linear
subspace.

Several methods for local PCA (which is closely related to “Gaussian mixture
models”) have been suggested; see the discussion in section 5.2. Here we in-
troduce a method which was derived from a deterministic framework (vector
quantization, PCA, and annealing). It is based on the soft competition scheme
of the Neural Gas vector quantization method [6] and uses an online regime
with an update of centers and subspaces after the presentation of each sin-
gle data point. In soft competition methods, a data point is not exclusively
assigned to one unit, but shared between multiple units according to a set
of weighting factors (see section 5.2). Soft competition is generally favorable
since it prevents the method from getting caught in sub-optimal solutions
[2], and especially the ranking method adopted from Neural Gas [6] is known
to converge fast to near-optimal solutions. Instead of the Euclidean distance
measure used by Neural Gas, a combination of a normalized Mahalanobis dis-
tance with the squared reconstruction error guides the competition between
the units. The weighting between the two measures is determined from the
residual variance in the minor subspace of each sub-model. The unit centers
are updated as in Neural Gas, while the subspace learning is based on an on-

2 The term “local PCA” is also used to describe local Hebbian type learning al-
gorithms where “local” refers to the fact that the weight modification in a single
PCA network only depends on the corresponding pre- and postsynaptic activities
[3]. We thank one of the anonymous reviewers for pointing out this possible source
of confusion.

2

line neural principal component analyzer, the “robust recursive least squares
learning algorithm” (RRLSA) [7].

In section 2, we briefly recapitulate the Neural Gas vector quantization ap-
proach. Our extension of this method to local PCA is introduced in section
3. The method is tested on low-dimensional synthetic data and on a high-
dimensional problem of handwritten digit recognition in section 4. We discuss
the distance measure used for the competition in section 5.1 and the relation
to other local PCA methods in section 5.2. The PCA method is described
in appendix A, appendix B provides an analysis of the extrema in the po-
tential function that is underlying the competition in our model, appendix C
describes the computation of the log-likelihood that was used to evaluate the
experimental results, and appendix D describes the models of the synthetic
distributions.

2 Neural Gas

Vector quantization methods encode a set of data points in n-dimensional
space with a smaller set of reference or center vectors ck; k = 1, . . . , N . Each
data vector is represented by the closest reference vector. The reference vectors
are determined such that the expected Euclidean distance between all data
vectors and their corresponding reference vectors becomes minimal. Neural
Gas [6] is a vector quantization technique with soft competition between the
units. The reference vectors ck are initialized by randomly assigning vectors
from the training set. In each training step, the squared Euclidean distances

dk(x) = ‖x− ck‖2 = (x− ck)
T (x− ck) (1)

between a randomly selected input vector x from the training set and all
reference vectors ck are computed; the vector of these distances is d. Each
reference vector k is assigned a rank rk(d) = 0, . . . , N − 1, where a rank of 0
indicates the closest and a rank of N − 1 the most distant reference vector to
x. The reference vectors are then adjusted according to

ck ← ck + ε · h%[rk(d)] · (x− ck). (2)

The function h%(r) = e−r/% implements the soft competition method: not
only the best-matching reference vector is adapted (with h%(0) = 1), but
also all other reference vectors, with a factor that is exponentially decreas-
ing with their rank. The width of this influence is determined by the neigh-
borhood range %. In addition, the update of all reference vectors is affected
by a global learning rate ε. Over the course of learning, both % and ε de-
crease exponentially from an initial positive value (%(0), ε(0)) to a smaller
final positive value (%(T), ε(T)) according to %(t) = %(0)[%(T)/%(0)](t/T) and

3

ε(t) = ε(0)[ε(T)/ε(0)](t/T). Here t denotes the time step and T the total num-
ber of training steps. Thus, over time, modifications become more local and
convergence is enforced.

3 Extension of Neural Gas to Local PCA

In contrast to plain vector quantization, local PCA techniques do not only
partition the data space into a number of disjunctive regions, but also approx-
imate the data points within a region by their projections into the local system
of the principal eigenvectors (i.e., the eigenvectors with the largest associated
eigenvalues). Thus, the distribution is represented by a collection or a mixture
of local linear sub-models (referred to as “units” in the following) [2].

In our extension of the Neural Gas method to local PCA, each of the N
units is described by a tuple {ck,Wk,Λk, λ

∗

k}, with k = 1, . . . , N denoting the
unit index. The number of units N is fixed and must be chosen before the
training according to the expected complexity of the data distribution and to
the computational effort that can be invested in the training; increasing N
will usually improve the approximation quality. The vector ck is the reference
or center vector as in Neural Gas. The n × m matrix Wk encodes the first
m principal eigenvector estimates wki of the local distribution in its columns
i = 1, . . . , m. The diagonal m × m matrix Λk contains the corresponding
first m principal eigenvalue estimates λki, and the parameter λ∗

k represents an
estimate of the eigenvalue in each of the remaining n−m minor eigendirections.
In geometrical terms, each unit k now encodes a hyper-ellipsoid centered at
ck. Directions and lengths of the first m half-axes of the hyper-ellipsoid are
specified by the unit-length axis vectors wki and the square root of the diagonal
entries λki, respectively. In the remaining n−m dimensions, the hyper-ellipsoid

is spherical with a radius
√

λ∗
k; see also [5].

Instead of the Euclidean distance (1), the soft competition between the units
uses the distance measure

dk(x) = yT
k Λ−1

k yk +
1

λ∗
k

(ξT
k ξk − yT

k yk) + ln |Λk|+ (n−m) ln λ∗

k, (3)

where ξk = x− ck is the deviation between the input vector x and the center
of the unit ck, and the vector yk = WT

k ξk contains the coordinates of ξk in
the system of the first m eigenvectors wki. |Λk| denotes the determinant of
Λk. We provide a motivation for this distance measure in section 5.1.

For each presented input vector x, the rank rk(d) of unit k is determined
from the distance measure (3) as described above. Equation (2) is used for
the update of the centers. Simultaneously, the shape of the hyper-ellipsoid in

4

the first m dimensions, encoded by Wk and Λk, is updated through an online
PCA method. In our implementation this is RRLSA, a neural method for
principal component analysis based on the recursive least squares method [7],
but other methods could be used in its place. We selected RRLSA since it is
robust and converges fast even if the eigenvalues extend over several orders of
magnitude. The method was slightly modified by introducing a unit-specific
learning rate αk = ε · h%[rk(d)]. We abstractly write the update as

Wk,Λk ← PCA{Wk,Λk, ξk, αk}, (4)

and provide the details of the modified method in appendix A. An estimate
λ∗

k of the eigenvalues in the n−m minor directions is obtained by determining
the residual variance σ2

k in these directions from

σ2
k ← σ2

k + αk · (ξT
k ξk − yT

k yk − σ2
k), (5)

and distributing the residual variance evenly to all minor directions gives

λ∗

k =
σ2

k

n−m
. (6)

The neighborhood range % and the learning rate ε decrease exponentially as
in the Neural Gas method. The initial and final values of neighborhood range
and learning rate need to be adjusted by experimentation. The parameter sets
given in this paper can be used as orientation for the selection.

The unit centers ck are initialized as in Neural Gas, the eigenvector estimates
wki of each unit k are initially set to a random orthonormal system, the m
eigenvalue estimates λki are assigned identical values λ(0) in all units and
dimensions, and the residual variances σ2

k are initially set to a value σ2(0).
The choice of λ(0) and σ2(0) is not critical.

In the following, our learning system is referred to as a “network”. Although
we do not provide a network schematic with neurons and synaptic connections
here, we assume that for most of the mechanisms of our learning system (PCA
units, competition between units) strictly connectionist counterparts can be
found.

4 Simulations

We test the suggested local PCA method on synthetic data in two and three
dimensions (section 4.1) and on high-dimensional data in a pattern recognition
task (section 4.2).

5

4.1 Synthetic Data

4.1.1 Data Generation and Analysis

Training data were synthesized from given distribution models (see appendix
D). The following standard parameter set was used in the training (unless
stated otherwise): number of training steps T = 30 000, final neighborhood
range %(T) = 0.01, initial global learning rate ε(0) = 0.5, final global learning
rate ε(T) = 0.05. The initial neighborhood range %(0) was varied with the
number N of units and is specified for each experiment. The initial eigenvalue
λ(0) and the initial residual variance estimate σ2(0) were chosen according
to the spatial extension of the distribution and are also specified for each
experiment.

In figures 1 to 5 and figure 11, training vectors are depicted as small gray
squares. The training results are visualized as a set of Mahalanobis ellipsoids
centered at ck. For graphical reasons, the length of the half-axis i of a unit k
is shown as 1.5

√
λki. The principal eigenvector is visualized by a thick arrow,

the second principal eigenvector by a thinner arrow. For experiments with
three-dimensional data (figures 4 and 5), the projections of training vectors
and ellipsoids onto two coordinate planes are shown (the coordinate systems
are indicated in the diagrams).

For each result, we specify the log-likelihood per pattern (L, see appendix C).
Note that the absolute value of L depends on the scaling of the distribution and
is therefore not of importance. Moreover, as visible in figure 1, the absolute
change of L from an unordered to the final well-ordered state is small. We
therefore only provide L with the intention to demonstrate an improvement
in the approximation of the data points over training, and to give a basis for
the comparison between different methods.

After training, each pattern can be assigned to one of the units according to
the minimal distance (3). To evaluate if all units are used to approximate the
distribution, we count the number of patterns (νk) assigned to each unit and
provide the mean and standard deviation of this number over all units.

4.1.2 Vortex-like Distribution

Figure 1 shows the network state at different time steps in the training process
for a two-dimensional, vortex-like distribution. The log-likelihood increases
during training, and the improvement of the model quality is clearly visible.
After the final step, each unit is assigned approximately the same number of
patterns, but the size of the ellipsoids in the center of the vortex is smaller
since there the density of the data points is higher.

6

t = 0 t = 1 000 t = 5 000 t = 15 000 t = 30 000

L = −10.89 L = −10.81 L = −10.63 L = −10.45 L = −10.29

Fig. 1. Snapshots of the training process at different time steps t for a vortex-like dis-
tribution with 1 000 points (n = m = 2, N = 20, %(0) = 2, λ(0) = σ2(0) = 1 000.0).
Final assignment: νk = 50± 9.7 patterns per unit.

50 ± 6.5,−10.25 50 ± 9.2,−10.29 50 ± 9.8,−10.26 50 ± 10.4,−10.29 50 ± 12.0,−10.32

50 ± 9.9,−10.26 50 ± 9.5,−10.27 50 ± 12.7,−10.30 50 ± 12.5,−10.26 50 ± 13.1,−10.30

Fig. 2. Final network states for a vortex-like distribution with 1 000 points
(n = m = 2, N = 20, %(0) = 2, λ(0) = σ2(0) = 1 000.0), obtained from 10
runs with different random initialization and different random presentation order
of the data points. Mean and standard deviation of νk and the log-likelihood L are
given for each final state.

In order to test the robustness of the method, we repeated the training process
10 times with the same distribution, but different random initialization and
different random presentation order of the data points. The final network
states are shown in figure 2. Visual inspection reveals small defects in only
two of the experiments (rightmost runs in the top and bottom row); in both
cases, one of the ellipses is extending over the gaps in the distribution. Except
for these two runs, the final approximations are qualitatively the same.

4.1.3 Ring-line-square Distribution

Ten learning runs with the the ring-line-square distribution in figure 3 (A)
produced qualitatively comparable results (not shown) with log-likelihoods of
the final approximation ranging from −10.91 to −10.85. A comparison of fig-
ure 3 A and B illustrates the advantage of our method, where competition
and PCA are integrated (A), over a two-stage method (B). In the two-stage
method, which is the simplest form of local PCA, the partitioning is accom-
plished by vector quantization (here Neural Gas), and PCA is subsequently

7

A

B

Fig. 3. Results of the training for a two-dimensional distribution with 500 data
points in the ring, 50 data points in the line, and 200 data points in the square
part (n = m = 2, N = 10, %(0) = 1, λ(0) = σ2(0) = 1 000.0). A: Training pro-
cess as described in section 3 (L = −10.85, νk = 75 ± 26.6). B: Local regions are
obtained from a Neural Gas step, then PCA is executed in each region separately
(L = −11.09, νk = 75 ± 33.6).

applied within each of the local regions defined by the vector quantization. In
the PCA phase, there is no competition between the regions, and the quan-
tization itself remains unchanged. For each region, 3 000 steps with the same
PCA method (see appendix A) were executed. The log-likelihood values show
that the approximation is better with the integrated method, which is also
obvious from the diagrams. The centers found by the Neural Gas method
(B) differ from those found by the local PCA method (A), especially in the
square-shaped part of the distribution.

4.1.4 Spiral Distribution 1

Results with a three-dimensional spiral-shaped distribution are shown in fig-
ures 4 and 5. In this example, uniformly distributed noise in the directions of
the three axes was used to generate the noisy spiral (see appendix D). Full
PCA (n = m) was used in figure 4, while in figure 5, the same distribution was
approximated by units with a single principal eigenvector (m = 1) and estima-
tion of λ∗

k from the residual variance. Obviously the method found reasonable
values for λ∗

k (indicated by circles in figure 5).

8

x

y

z
z

y

x

Fig. 4. Results of the training process for a three-dimensional spiral-shaped distri-
bution (n = m = 3, N = 12, %(0) = 1). L = −14.06, νk = 83.3 ± 10.6.

x

y

z
z

y

x

Fig. 5. Results for the same distribution as in figure 4, but with dimension reduction
(n = 3, m = 1, N = 12, %(0) = 1). The radii of the circles have the values 1.5

√
λ∗

k.
L = −14.11, νk = 83.3 ± 12.7.

4.1.5 Spiral Distribution 2

For a similar spiral-shaped distribution, we compared the performance of our
method with two of the most recent local PCA methods, the Mixture of Proba-
bilistic Principal Component Analyzers (“Mixture-of-PPCA”) method [2] and
the “Generalized Radial Basis Function Network” [8]. Spiral data (500 points
with Gaussian noise) were generated with the same Matlab program as used
in [2]. In all experiments, N = 8 units with a single principal eigenvector
(m = 1) were used.

For the standard parameter set with %(0) = 1.0 and λ(0) = σ2(0) = 1.0, our
method produces a model with L = 1.510 (mean over 5 values ranging from
1.479 to 1.538). The final result can be slightly improved without qualitative
differences by lowering both the final neighborhood range and the final learning
rate. With the modified parameter set T = 30 000, %(0) = 1.0, %(T) = 0.005,
ε(0) = 0.5, ε(T) = 0.005, λ(0) = σ2(0) = 1.0, we obtain L = −1.444 (mean
over 5 values ranging from −1.425 to −1.470). The Netlab implementation [9]
of the Mixture-of-PPCA method [2] achieves L = −1.483 (for exactly the same
data set), and a value of L = −1.426 is given in the paper [2] for a different
data set generated from the same model distribution with the above-mentioned
program. In the Generalized Radial Basis Function Network (used as described
in section 3.1.3 in [8]), the mean log-likelihood was L = −1.480, obtained
from 5 values ranging from −1.464 to −1.507. Note that the differences in
the magnitude of L to the spiral distributions in figures 4 and 5 are due to

9

differences in the scaling of the distributions which affects the log-likelihood.

4.2 Recognition of Handwritten Digits

In this paper, we use handwritten digit recognition to test the generalization
abilities of our local PCA method on high-dimensional data (here n = 784).
Our goal is not to compete with other pattern recognition methods (which in
their performance are often superior to our results [10]), but to compare our
local PCA approach with the performance of similar unsupervised approaches.
Each digit class is modeled by a separate network. In the training process, the
different networks do not interact. For the classification of a digit, the distances
to all units of all networks are computed, and the digit is classified as part of
the network model containing the unit with minimal distance value.

We used 70 000 digits from the handwritten digit database MNIST [11] which
is a subset of the NIST database produced by the U.S. National Institute of
Standards and Technology. The database is separated into 60 000 digits for
training and 10 000 digits for testing. The gray-scale images (scaled to pixel
values in the interval [0, 1]) are centered in a 28× 28 pixel grid. Without any
preprocessing they were transformed into feature vectors with 28× 28 = 784
dimensions and compiled in 10 training sets.

Each of the 10 networks contains N = 10 units with m = 10 eigenvector di-
rections. The eigenvector estimates were initialized with random orthonormal
vectors, and the initial values λ(0) = σ2(0) = 0.1 were chosen. The network
was trained using the parameter set T = 30 000, %(0) = 2, %(T) = 0.002,
ε(0) = 0.5, ε(T) = 0.0002. The training of all 10 networks took about 36 min-
utes on an Athlon XP 2200+ with 1 GB RAM. In order to analyze whether
the shape of the hyper-ellipsoids is actually of importance for the classifica-
tion, we compare the distance measure (3) — a combination of a normalized
Mahalanobis distance with the squared reconstruction error (section 5.1) —
with the Euclidean distance (1). To give a comparison with a vector quan-
tization approach, we also trained and tested with the standard Neural Gas
method using the same training parameters (training time about 6 minutes).
As with the synthetic data (see figure 3, B), we applied the two-stage learning
method where the data set is partitioned by Neural Gas and PCA is performed
separately in each region without competition between the units (PCA stage:
3 000 training steps, training time about 2 minutes).

Table 1 summarizes the results. The error rates given for the extension of Neu-
ral Gas are the averages over 3 training processes, each with different random
initialization and different random presentation order of the data points. The
differences between minimal and maximal error rates were 0.26%, 0.10%, and

10

Table 1
Error rates of the digit classification (image size 28 × 28). The percentage of mis-
classified digits is given for different training methods, different distance measures
in the classification, and for the classification of the training or the test set.

training method distance measure data set error rate

extension of
normal. Mahalanobis + reconstr. test 2.79 %

normal. Mahalanobis + reconstr. training 1.97 %
Neural Gas

Euclidean test 8.23 %

Neural Gas Euclidean test 7.61 %

Neural Gas + PCA normal. Mahalanobis + reconstr. test 3.03 %

0.38% for the error values given in rows 1 to 3. Error rates achieved with the
Euclidean distance measure (1) are considerably higher than with the normal-
ized Mahalanobis plus reconstruction distance (3), both for the centers found
by our method and for the centers found by Neural Gas. This clearly shows
that indeed the shapes of the hyper-ellipsoids are essential in the classification.
The result of the Neural Gas algorithm is slightly better than the Euclidean
measure applied to our method, since the optimization in Neural Gas directly
relates to this distance measure. Surprisingly, the simple two-stage procedure
(Neural Gas plus PCA) yields almost as good results as our method and even
performs slightly better than previously suggested local PCA methods (see
below). Apparently, handwritten digit data are not a test case were an in-
tegrated local PCA method like ours shows a pronounced advantage over a
sequential method (as it is visible in figure 3).

In the following, we will take a closer look at the structure of the trained
model. The patterns of the training set were about evenly assigned to the
units (νk = 600± 92 over all digits). The centers of the 10 hyper-ellipsoids of
each network are shown in figure 6. They are typical representatives of the 10
digits with variations in the style of writing (different slants and sizes, digit
“2” with or without loop, digit “7” with or without cross-bar). Figure 7 shows
the eigenvectors wki which determine the orientation of one hyper-ellipsoid in
the network of the digit “2”. The eigenvectors encode the variations around
the digit represented by the center vector. To illustrate this further, we added
multiples of one of the eigenvectors (here the principal eigenvector) to the
center and plotted the resulting image; see figure 8. Comparing the images
in the two opposite directions along one eigenvector reveals a change of the
digit’s size and of the slant of the lower stroke.

Figure 9 shows a sample of images mis-classified by our method together with
the center vectors of the unit to which they were assigned. Misclassified images
mostly seem to be extreme variations lying far from the majority of other digits
of their class and are thus not covered by the describing hyper-ellipsoids.

11

Fig. 6. The centers of the 10 hyper-ellipsoids of each network after training.

Fig. 7. Center (left image) and eigenvectors (in deflation order from left to right)
of one unit of the network for the digit “2”. In the eigenvector diagrams, white and
black indicate positive and negative components, respectively.

Fig. 8. The variation of a digit by adding multiples of the principal eigenvector wk1

to the center ck. The center image ck is marked by a frame, the eigenvector wk1 is
depicted on the right side. From the center to the left, −0.5

√
λk1wk1 is added to

each picture. Thus, the picture on the very left deviates by −2
√

λk1wk1 from the
center. From the center image to the right, the vector 0.5

√
λk1wk1 is added. The

principal eigenvalue was λk1 = 5.50.

Fig. 9. A sample of the mis-classified digits. The first mis-classified digit of each
class is shown (top row, class “0” to “9” from left to right) together with the center
vector of the unit to which the pattern was assigned (bottom row).

12

Table 2
The classification performance of our model (first two rows) compared to others.
The database, the number of training patterns, the image size, the number of units,
and the number of principal components used are given. The classification error on
the test set is shown in the last column.

training method database patterns image size units PCs error

extension of NG MNIST 60 000 28× 28 10 10 2.79%

extension of NG MNIST 60 000 8× 8 10 10 3.11%

Hinton et al. [5] CEDAR 11 000 8× 8 10 10 4.68%

Tipping et al. [2] CEDAR 11 000 8× 8 10 10 4.64%

Meinicke et al. [12] MNIST 60 000 8× 8 8 var. 2.91%

Zhang et al. [14] NIST 10 000 25× 20 20 1 4.58%

Zhang et al. [14] NIST 10 000 25× 20 40 1 2.20%

The proposed model performs similarly to other modular models applied to
the same task. In order to make the results more comparable, we repeated the
training with a database of image size 8×8. This database was obtained from
the original database with image size 28× 28 in the following way: A margin
of 4 pixels was removed from the original images, so that the digits in the
resulting 20 × 20 image are tightly fitting into the frame. Each of the pixels
of the final 8× 8 image was produced by a weighted summation over a local
region with a Gaussian of half-width 1.25 pixels (in the original image). The
same training parameter set as for the 28× 28 pixel database was used.

Table 2 presents the results of our method with image size 28× 28 and 8× 8,
together with the results obtained from previous publications. The results
for our network are averages over 3 training processes (as described above).
Hinton et al. [5] use a mixture of locally linear models, Tipping and Bishop
[2] use the Mixture-of-PPCA method. However, both studies used a different
database. Meinicke and Ritter [12] used the same database as we did, sampled
down to 8 × 8 pixels. Their method is a Gaussian mixture model with an
additional annealing process, where the dimensionality of the major subspace
increased during training depending on the data set. The method of Zhang
et al. [13; 14] is briefly described in section 5.2; we report the error rates for
their best network with the smallest and with the largest number of units.

13

5 Discussion

5.1 Distance Measure

The core of our extension of Neural Gas to local PCA is the distance measure
(3) which guides the competition between the units. So far we did not succeed
in deriving the method from a common error function, as it was accomplished
for Neural Gas and for local PCA methods based on maximizing the log-
likelihood. We can, however, motivate the distance measure by the following
analysis. Here we focus on one local region and therefore omit centers and
unit indices in the equations. We start with a distance measure d(ξ) and its
expectation D for all data within the region (subsequently also referred to as
potential function):

d(ξ) = ξTWΛ−1WT ξ − tr(WTW) + ln |Λ| (7)

D = E{d(ξ)}=tr(WTCWΛ−1)− tr(WTW) + ln |Λ|. (8)

C = E{ξξT} is the covariance matrix of the data assigned to the region,
W is an n × m matrix (m ≤ n) the columns of which are the m estimated
eigenvectors of dimension n, and Λ is a diagonal m×m matrix containing the
estimated eigenvalues.

D has its candidate extreme points in eigenvectors and eigenvalues (W̄, Λ̄) of
C. In appendix B we prove that under the orthonormality constraint WTW =
I only those candidate points are strict local minima, where W̄ and Λ̄ contain
the minor eigenvectors and eigenvalues, respectively, while all other candi-
date points are saddle points. PCA will therefore minimize (8) only if n = m
(determining all minor eigenvectors also gives all principal eigenvectors), but
not in the case of dimension reduction (m < n). We assume it to be a com-
mon principle underlying both Neural Gas and our method that the potential
function minimized by the learning rules, here D, is the averaged version of
the distance measure guiding the competition between the units, here d(ξ).
The condition n = m must therefore also hold for the distance measure, i.e. a
full principal component analysis yielding all n eigenvectors and eigenvalues
is required.

However, there are a number of arguments why full PCA should be avoided.
Firstly, for high-dimensional data full PCA would be forbiddingly costly.
Secondly, most natural data sets (like image data, see e.g. [15]) have large
eigenvalues only in few eigendirections, while the variances in the remaining
eigendirections are small and can be considered as noise. Thirdly, in many
real-world applications the size of the data set will be limited, resulting in
only a small number of directions with non-zero variance — trying to deter-

14

mine more eigendirections than that will produce numerical problems [4]. We
therefore strive to reduce the number of eigenvectors to be determined, while
at the same time fulfilling the condition n = m.

This can be accomplished by approximating all eigenvalues in the remaining
n−m minor directions with an identical estimate λ∗. We assume W and Λ to
be of dimension n× n. W is split into W = (Ŵ,W̌), with Ŵ containing in
its columns the m principal eigenvectors to be determined, and W̌ containing
the n−m minor eigenvectors. Λ is composed of Λ̂ in the upper part, with Λ̂

containing the m principal eigenvalues, and λ∗I in the lower part (I is a unit
matrix of size n−m). From (7) we obtain

d(ξ) = ξTWΛ−1WT ξ −m + ln |Λ| (9)

= ξTŴΛ̂−1ŴTξ +
1

λ∗
ξTW̌W̌T ξ −m + ln |Λ̂|+ (n−m) ln λ∗ (10)

= ξTŴΛ̂−1ŴTξ +
1

λ∗
ξT (I− ŴŴT)ξ −m + ln |Λ̂|+ (n−m) lnλ∗ (11)

= ŷT Λ̂−1ŷ +
1

λ∗
(ξT ξ − ŷT ŷ)−m + ln |Λ̂|+ (n−m) ln λ∗. (12)

Under the orthonormality constraint, the second term in equation (7) be-
comes tr(WTW) = m. The transition from equation (10) to (11) exploits
the orthonormality condition WWT = I. In equation (12) we introduced the
transformed coordinates ŷ = ŴTξ, from which we obtain an expression for
the squared reconstruction error

e2 = ξT ξ − ŷT ŷ = ‖ξ − Ŵŷ‖2. (13)

The distance measure in equation (12) corresponds to dk(x) in equation (3);
only the constant third term (−m) was omitted since it does not affect the
competition. An estimate of the expectation of e2 — the residual variance
σ2 = E{e2} in the remaining n −m directions — is obtained from equation
(5), and evenly distributing the residual variance to all minor directions gives
λ∗ from equation (6).

The distance measure (9) is identical (up to a constant offset and factor) to
the “normalized Mahalanobis distance” used by Sung and Poggio [4]

dM(ξ) = 1
2
(n ln 2π + ξTC−1ξ + ln |C|) (14)

which is the negative logarithm of the best-fitting multi-variate Gaussian for a
distribution with the covariance matrix C. A normalized Mahalanobis distance
combines a Mahalanobis distance (first term in (9), second term in (14)) and
an expression related to the volume of the corresponding hyper-ellipsoid (third
term in (9), third term in (14)). This volume term cannot be omitted since

15

x

x x

CA B

2c

1c 1c

2c

1c

2c

Fig. 10. Comparison between different distance measures (n = 2, m = 1). A: Nor-
malized Mahalanobis distance in the principal subspace. B: Squared reconstruction
error. C: Combination of the two measures. Filled circles depict the centers c1 and
c2 of two local PCA units, the solid lines show their principal eigendirections, and
the dashed curves visualize iso-distance curves. The two units are assumed to ap-
proximate two distributions indicated by the shaded regions. Open circles depict
data vectors x. The data vectors shown would be assigned to unit 2 in (A), to unit
1 in (B), and to unit 2 in (C).

minimizing a plain Mahalanobis distance would lead to an unlimited growth
of the size of the hyper-ellipsoid.

Sung and Poggio [4] compute the normalized Mahalanobis distance for the
m principal directions (first and fourth term of (12)), and the squared recon-
struction error (13), but keep both measures separate in a two-value distance
metric. Hinton et al. [5] add both measures as in (12), but with a relative
weighting adjusted by a fixed parameter, whereas in our method the weight-
ing depends on the current estimate of λ∗. The last term in (12) would be
constant and identical for all units in the approach by Hinton et al. and can
thus be omitted there, but has to be included here, since λ∗ takes different
values for each unit.

Geometrically, combining the normalized Mahalanobis distance in the prin-
cipal subspace with the squared reconstruction error corresponds to comple-
menting a hyper-ellipsoid in the principal subspace with a hyper-sphere in the
minor subspace [5; 4]. Each measure alone would not be sufficient for the com-
petition between the units, as is shown in figure 10 for an example with n = 2
and m = 1. If the normalized Mahalanobis distance is only computed in the
principal subspace, iso-distance hyper-curves degenerate from hyper-ellipsoids
to hyper-elliptic cylinders since the distance measure remains constant when
moving in the minor subspace. In the two-dimensional case shown in figure
10 (A), the iso-distance curves are parallel lines (dashed). It is obvious from
the figure that a data vector x (open circle) in large Euclidean distance from
the center of a unit may unwantedly yield a small normalized Mahalanobis
distance for this unit and therefore is wrongly assigned to that unit. The same
holds if the reconstruction error alone is used as distance measure (B), with
the difference that here the distance value stays constant when moving in the
principal subspace. Only a combination of the two measures or a full normal-

16

A

B

Fig. 11. Result of the training (n = 2, m = 1) for different distance measures
used in the competition. A: Combination of normalized Mahalanobis distance and
reconstruction error. B: Normalized Mahalanobis distance in the principal subspace
alone. Arrows represent the principal eigenvector of each unit. Data points shown in
black have the minimal distance to the unit with the center enclosed in the square.

ized Mahalanobis measure (C) will ensure a proper assignment to the units.
This holds for both the competition in the training phase and for the appli-
cation of the model. Figure 11 shows that using the normalized Mahalanobis
distance in the principal subspace alone causes our method to fail: In diagram
B, many unit centers lie outside the distribution, the principal eigenvectors
are not aligned with the data, and distant patterns are assigned to the same
unit.

5.2 Relation to Other Local PCA Methods

Local PCA methods previously suggested in the literature can be classified
according to different criteria. A first dichotomy can be found between block

and online methods. Block methods execute alternating steps of pattern as-
signment and local PCA (including the update of the centers), where the PCA
step considers all patterns that were previously assigned to a region [5; 1; 4; 2].
Online methods work in a pattern-by-pattern regime: after the presentation of
a single pattern, the pattern is assigned to the units, and the centers as well as
the eigenvector and eigenvalue estimates are updated immediately [16; 13; 14].
A second dichotomy is given between hard and soft assignment (or competi-
tion). A data vector can be assigned exclusively to one unit or a set of units
(hard assignment, [16; 5; 1; 4]), or the responsibility for a data vector can

17

be shared between all units according to weighting factors (soft assignment,
[5; 2; 13; 8; 14]). A third dichotomy distinguishes between approaches derived
from or motivated by a probabilistic framework, often based on “Expectation
Maximization” (EM) [17] of Gaussian mixture models [18; 19; 20; 5; 21; 2; 12],
and approaches based on a deterministic framework, usually a combination of
vector quantization methods, PCA, and annealing techniques [16; 1; 4; 13; 14].
There is, however, a smooth transition and partially an equivalence between
these two classes [21].

The method suggested here is an online method with soft assignment derived
from a deterministic framework. In contrast, the majority of the methods,
specifically those based on EM, are block methods. Clear advantages of ei-
ther block or online methods cannot be accounted for so far. Soft assignment
should definitely be preferred, since hard assignment is prone to premature
convergence to sub-optimal solutions [6; 2]. The selection of a deterministic
framework was mainly motivated by the advantageous properties of the Neu-
ral Gas vector quantization approach, specifically the robustness of its soft
competition scheme, and by the existence of fast and robust neural principal
component analyzers with online regime like RRLSA.

The method of Zhang et al. [13; 14] is like ours classified as online, soft, and
deterministic, and also uses the soft competition scheme of Neural Gas. The
method is, however, restricted to a special case where all local principal sub-
spaces go through the origin, and can therefore not be used to approximate
arbitrary distributions. An application to the synthetic test cases presented
in section 4.1 would therefore fail. In the digit recognition task (section 4.2),
Zhang’s method produces good results, probably because the single principal
eigenvector points towards those corners of the data hypercube, where the
digits of the corresponding class are located. In Zhang’s method, the ranking
is based on the reconstruction error, and the update of the local principal
subspaces is accomplished by a non-linear version of Oja’s subspace rule [22].
With regard to the analysis in section 5.1 we assume that using the recon-
struction error alone as distance measure is justified in their method since
the subspaces go through the origin and an erroneous assignment like the one
depicted in figure 10 (B) cannot occur.

6 Conclusion

The method presented in this work can be interpreted as an extension of the
Neural Gas vector quantization method [6] to local PCA. It is an instance
of a local PCA method with online learning. The robust soft competition
mechanism of Neural Gas is used to avoid premature convergence. Competi-
tion between the units is guided by a weighted combination of the normalized

18

Mahalanobis distance in the major subspace and the reconstruction error, as
was previously suggested [5]. A novel method was introduced which allows
to estimate the weighting factor from the residual variance in the minor sub-
space. The performance of the method crucially depends on the core principal
component analyzer which has to work robustly over several orders of mag-
nitude in the eigenvalues. RRLSA [7] — a method derived from a recursive
least squares approach — proved to be a good choice. Since all eigenvector
and eigenvalue estimates are updated simultaneously, the PCA method had
to be combined with a subsequent Gram-Schmidt step to avoid a collapse of
orthogonality. Gram-Schmidt orthonormalization is costly, but interlocking of
learning and orthonormalization can reduce the total computational effort [23]
(see appendix A). In tests with low- and high-dimensional data our method
proved to work robustly, and the classification quality in the digit recogni-
tion task is comparable to other local PCA methods. Besides the number of
units and the number of principal eigenvectors, only the number of training
steps, four training parameters (initial and final values of neighborhood range
and global learning rate), and the initial values for the eigenvalue estimates
and for the estimate of the residual variance have to be chosen. The distance
measure could be motivated by both analytical and geometrical arguments.
Ongoing research focuses on an application of the method to the learning of
input-output relationships, specifically for kinematic robot arm models.

Acknowledgements

M.E. Tipping kindly provided the Matlab program used for the generation
of the spiral data. The authors are grateful to P. Tavan for making available
the code of the Generalized Radial Basis Function Network. R.M. thanks B.
Herrnberger for comments on the manuscript and A. Könies for countless
fruitful discussions.

A PCA Method

Local PCA in the presented approach is based on the “Robust Recursive
Least Squares Learning Algorithm” (RRLSA) [7]. Least-squares methods for
PCA converge faster than gradient-based algorithms, since they are not suf-
fering from accuracy-speed trade-offs [24; 25]. RRLSA is a sequential net-
work of single-neuron principal component analyzers based on deflation of
the input vector [26]. In the following, we describe the update mechanism of
a slightly modified version of RRLSA, written in equation (4) as W,Λ ←
PCA{W,Λ, ξ, α} (unit indices k are omitted here). Note that for the RRLSA

19

method the eigenvalue estimates are not state variables, thus the update for-
mally simplifies to W,Λ← PCA{W, ξ, α}.

Internally, RRLSA uses an unnormalized version W̃ of the weight matrix
which is initialized with small random values. For each data vector ξ, the
output signals of all neurons are computed with the normalized matrix W

(with unit-length column vectors wi, see below) from y = WT ξ. The update
of the unnormalized weight vectors is done according to

w̃i ← w̃i + α · (ξ(i)yi − w̃i), i = 1, . . . , m, (A.1)

where m is the number of analyzer neurons, α is a learning rate, and ξ(i)

denotes the deflated input vector seen by neuron i. The deflated input vector
is computed recursively from

ξ(i+1) = ξ(i) −wiyi with ξ(1) = ξ. (A.2)

The eigenvalue and eigenvector estimates are then obtained from

λi = ‖w̃i‖, wi =
w̃i

‖w̃i‖
, i = 1, . . . , m. (A.3)

For the application of RRLSA in the local PCA method, a subsequent orthog-
onalization of W̃ based on the Gram-Schmidt procedure is needed. Since all
eigenvectors have to be estimated simultaneously in each step, deflation is not
sufficient to maintain the orthogonality of the weight matrix. If the previous
eigenvector estimates are not exactly perpendicular, the deflated vector in the
next network stage will have components in the subspace of these eigenvectors
which may be larger than the components in the corresponding orthogonal
subspace. The resulting loss of orthogonality causes the local PCA method
to fail, since the distance measure relies on orthonormal weight vectors in
W. Gram-Schmidt orthonormalization is costly (2nm2 operations), but when
learning and orthonormalization are interlocked, the computational effort re-
duces by a factor of two [23]. All results presented in this paper were produced
with the interlocked method. Since, in principle, orthonormality could dete-
riorate over time in the interlocked method (although this was only observed
in pathological cases), an orthonormalization step using a Modified Gram-
Schmidt procedure [27] was inserted after every 1 000th learning step.

20

B Proof of Minimum Property

The potential (8) can be written as

p(W,Λ) =
m∑

i=1

wT
i Cwiλ

−1
i −

m∑

i=1

wT
i wi +

m∑

i=1

ln λi, (B.1)

where W is an n×m matrix the columns of which are the m principal eigen-
vector estimates, and λi are the principal eigenvalue estimates. The candidate
extreme points of this potential fulfill

Cw̄i = w̄iλ̄i ∀ i = 1, . . . , n, (B.2)

where W̄ contains m eigenvectors of C as its columns and Λ̄ is a diagonal
matrix with m eigenvalues of C in the diagonal. In the following, we tacitly
assume that all eigenvalues of C are pairwise different. We study the potential
function on the orthonormality constraint wT

i wj = δij. Let vi be a small
deviation from w̄i. With wi = w̄i +vi, and w̄T

i w̄j = δij, the constraint can be
written as

w̄T
i vj + w̄T

j vi + vT
i vj = 0 ∀ i, j = 1, . . . , m. (B.3)

Moreover, let li be a small deviation from λ̄i, so λi = λ̄i + li. Considering
the constraint wT

i wj = δij, the potential in one of the candidate points is
p(W̄, Λ̄) =

∑m
i=1 ln λ̄i, while the potential in an arbitrary other point defined

by vi and li is

p(W,Λ)=
m∑

i=1

(w̄i + vi)
TC(w̄i + vi)(λ̄i + li)

−1 −m +
m∑

i=1

ln(λ̄i + li) (B.4)

=
m∑

i=1

(λ̄i − λ̄iv
T
i vi + vT

i Cvi)(λ̄i + li)
−1 −m +

m∑

i=1

ln(λ̄i + li), (B.5)

where (B.2) and (B.3) were applied. From a Taylor expansion up to second-
order terms we obtain the approximations (λ̄i + li)

−1 ≈ λ̄−1
i (1− λ̄−1

i li + λ̄−2
i l2i)

and ln(λ̄i + li) ≈ ln λ̄i + λ̄−1
i li − 1

2
λ̄−2

i l2i . We insert these into (B.5), omit
third- and higher-order terms of the small deviations, and find the following
expression for the potential difference

∆p = p(W,Λ)− p(W̄, Λ̄) =
m∑

i=1

1
2
λ̄−2

i l2i
︸ ︷︷ ︸

L

+
m∑

i=1

(

vT
i Cviλ̄

−1
i − vT

i vi

)

︸ ︷︷ ︸

S

. (B.6)

L is always non-negative, so we analyze the sign of S. After inserting the
spectral expansion C =

∑n
j=1 λ̄jw̄jw̄

T
j and I =

∑n
j=1 w̄jw̄

T
j we obtain

S =
m∑

i=1

n∑

j=1

(vT
i w̄j)

2(λ̄jλ̄
−1
i − 1). (B.7)

21

We split S into two sums

S =
m∑

i=1

m∑

j=1

(vT
i w̄j)

2(λ̄jλ̄
−1
i − 1)

︸ ︷︷ ︸

T

+
m∑

i=1

n∑

j=m+1

(vT
i w̄j)

2(λ̄jλ̄
−1
i − 1)

︸ ︷︷ ︸

U

, (B.8)

where T is again split into

T =
m−1∑

i=1

m∑

j=i+1

(vT
i w̄j)

2(λ̄jλ̄
−1
i − 1) +

m−1∑

j=1

m∑

i=j+1

(vT
i w̄j)

2(λ̄jλ̄
−1
i − 1). (B.9)

For small deviations vi we can use the following first order approximation
derived from (B.3):

w̄T
i vj ≈ −w̄T

j vi. (B.10)

After exchanging indices in the second sum of (B.9), inserting (B.10), and
fusing both sums, it turns into

T ≈
m−1∑

i=1

m∑

j=i+1

(vT
i w̄j)

2 (λ̄i − λ̄j)
2

λ̄iλ̄j

≥ 0. (B.11)

T is always non-negative, and U is non-negative for all deviations if and only
if

λ̄j > λ̄i ∀ j = m + 1, . . . , n, i = 1, . . . , m, (B.12)

thus the potential has a minimum in the minor eigenvectors and eigenvalues
of C.

Under (B.12), this minimum is strict, since all non-vanishing deviations from
the candidate extreme point entail ∆p > 0. First case: For any deviation in
λi, i.e. li 6= 0, we have L > 0 and thus ∆p > 0. Second case: Let us assume
that li = 0 ∀i, for which ∆p = S. We show by contradiction that S 6= 0.
By combining (B.8) with (B.11), (B.12), and (B.3) we conclude that the case
S = 0 requires vT

i w̄j = 0 ∀j = 1, . . . , n, i = 1, . . . , m. Since the w̄i span the
entire R

n, and each non-vanishing vi would have to be perpendicular to this
space, this can only mean vi = 0 ∀i. This contradiction proves ∆p > 0 also
for the second case.

If (B.12) is violated, so that ∃ j∗ ∈ {m+1, . . . , n}, i∗ ∈ {1, . . . , m} : λ̄j∗ < λ̄i∗,
we can choose the deviations li = 0 ∀i, and vi so that vT

i∗w̄j∗ 6= 0, while
vT

i w̄j = 0 for all other i, j. In this case we get ∆p < 0 for some deviations, so
the candidate extreme point turns out to be a saddle.

22

C Computation of the log-likelihood

From our distance measure (3) we obtain a Gaussian probability density func-
tion pk(x) = (2π)−

n

2 exp {−1
2
dk(x)} for each unit k. The prior probability or

mixing parameter [21] of each unit is estimated from Pk = νk/ν, where νk is
the number of training patterns assigned to unit k, and ν is the total number
of training patterns. The probability density function of a Gaussian mixture
model with N units is p(x) =

∑N
k=1 Pk pk(x). The log-likelihood per pattern

L is obtained from L = 1
ν

∑ν
i=1 log p(xi).

D Synthetic distributions

Each call to u(l, r) draws a random number from a uniform distribution be-
tween l and r. Each call to g(m, d) draws a random number from a normal
distribution with mean m and standard deviation d. Each call to b(M) returns
a number from the discrete set M with equal probability. The coordinates of
the generated data point are denoted by (x, y) (2D) or (x, y, z) (3D).

Vortex distribution Parameter: maximal angle α̂ = 6π, maximal radius
r̂ = 120, noise n = 20. Data point generation: angle α = u(0, α̂), radius
r = r̂ ∗ α/α̂ + u(0, n), coordinates x = r cos α, y = r sin α.

Ring-line-square distribution Parameter: Ring: inner radius ř = 50, outer
radius r̂ = 100. Line: length l = 150, noise n = 20. Square: side length
s = 200, noise n = 20. Data point generation: Ring: radius r = u(ř, r̂),
angle α = u(0, 2π), coordinates x = r cos α, y = r sin α. Line: coordinates
x = r̂ + u(0, l), y = u(−n/2, n/2). Square: v1 = b({0, 1}) · s +u(−n/2, n/2),
v2 = u(0, s), if b({0, 1}) = 0 the coordinates are x = r̂ + l + v1, y = −r̂ + v2,
otherwise x = r̂ + l + v2, y = −r̂ + v1.

Spiral distribution 1 Parameter: maximal angle α̂ = 2π, radius r = 120,
length l = 500, noise n = 20. Data point generation: point index k =
0, . . . , K−1, total number of points K, x̃ = k ·l/K, α̃ = k ·α̂/K, coordinates
x = x̃+u(−n/2, n/2), y = r cos α̃+u(−n/2, n/2), z = r sin α̃+u(−n/2, n/2).

Spiral distribution 2 Parameter: noise n = 0.1. Data point generation: x =
u(0, 1) · 4π + g(0, n), y = sin x + g(0, n), z = cos x + g(0, n).

References

[1] N. Kambhatla, T. K. Leen, Dimension reduction by local principal com-
ponent analysis, Neural Computation 9 (7) (1997) 1493–1516.

[2] M. E. Tipping, C. M. Bishop, Mixtures of probabilistic principal compo-
nent analyzers, Neural Computation 11 (2) (1999) 443–482.

23

[3] A. Weingessel, K. Hornik, Local PCA algorithms, IEEE Transactions on
Neural Networks 11 (6) (2000) 1242–1250.

[4] K. K. Sung, T. Poggio, Example-based learning for view-based human
face detection, IEEE Transactions on Pattern Analysis and Machine In-
telligence 20 (1) (1998) 39–51.

[5] G. E. Hinton, P. Dayan, M. Revow, Modeling the manifolds of images of
handwritten digits, IEEE Transactions on Neural Networks 8 (1) (1997)
65–74.

[6] T. M. Martinetz, S. G. Berkovich, K. J. Schulten, “Neural-gas” network
for vector quantization and its application to time-series prediction, IEEE
Transactions on Neural Networks 4 (4) (1993) 558–569.

[7] S. Ouyang, Z. Bao, G.-S. Liao, Robust recursive least squares algorithm
for principal component analysis, IEEE Transactions on Neural Networks
11 (1) (2000) 215–221.

[8] S. Albrecht, J. Busch, M. Kloppenburg, F. Metze, P. Tavan, Generalized
radial basis function networks for classification and novelty detection:
self-organization of optimal Bayesian decision, Neural Networks 13 (10)
(2000) 1075–1093.

[9] I. Nabney, C. Bishop, Netlab neural network software, Neural Computing
Research Group, Aston University, http://www.ncrg.aston.ac.uk/netlab/
(2002).

[10] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker,
H. Drucker, I. Guyon, U. Müller, E. Säckinger, P. Simard, V. Vapnik,
Comparison of learning algorithms for handwritten digit recognition, in:
F. Fogelman, P. Gallinari (Eds.), Proceedings of the International Con-
ference on Artificial Neural Networks, 1995, pp. 53–60.

[11] Y. LeCun, The MNIST database of handwritten digits, NEC Research
Institute, http://yann.lecun.com/exdb/mnist/index.html (1998).

[12] P. Meinicke, H. Ritter, Resolution-based complexity control for Gaussian
mixture models, Neural Computation 13 (2) (2001) 453–475.

[13] B. Zhang, M. Fu, H. Yan, Handwritten digit recognition by a mixture
of local principal component analysis, Neural Processing Letters 8 (3)
(1998) 241–252.

[14] B. Zhang, M. Fu, H. Yan, A nonlinear neural network model of mixture
of local principal component analysis: application to handwritten digits
recognition, Pattern Recognition 34 (2) (2001) 203–214.

[15] P. J. B. Hancock, R. J. Baddeley, L. S. Smith, The principal components
of natural images, Network 3 (1) (1992) 61–70.

[16] R. D. Dony, S. Haykin, Image segmentation using a mixture of principal
components representation, IEE Proceedings — Vision, Image, Signal
Processing 144 (2) (1997) 73–80.

[17] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from in-
complete data via EM algorithm, Journal of the Royal Statistical Society
Series B 39 (1) (1977) 1–38.

[18] C. Bregler, S. M. Omohundro, Nonlinear image interpolation using mani-

24

fold learning, in: G. Tesauro, D. Touretzky, T. Leen (Eds.), Advances in
Neural Information Processing Systems 7, MIT Press, Cambridge, MA,
1995, pp. 973–980.

[19] M. I. Jordan, L. Xu, Convergence results for the EM approach to mixtures
of experts architectures, Neural Networks 8 (9) (1995) 1409–1431.

[20] L. Xu, M. I. Jordan, On convergence properties of the EM algorithm for
Gaussian mixtures, Neural Computation 8 (1) (1996) 129–151.

[21] E. Alpaydin, Soft vector quantization and the EM algorithm, Neural Net-
works 11 (3) (1998) 467–477.

[22] E. Oja, Neural networks, principal components, and subspaces, Interna-
tional Journal of Neural Systems 1 (1) (1989) 61–68.

[23] R. Möller, Interlocking of learning and orthonormalization in RRLSA,
Neurocomputing 49 (1-4) (2002) 429–433.

[24] S. Bannour, M. R. Azimi-Sadjadi, Principal component extraction using
recursive least squares learning, IEEE Transactions on Neural Networks
6 (2) (1995) 457–469.

[25] K. I. Diamantaras, S. Y. Kung, Principal Component Neural Networks.
Theory and Applications, John Wiley & Sons, 1996.

[26] T. D. Sanger, Optimal unsupervised learning in a single-layer linear feed-
forward neural network, Neural Networks 2 (6) (1989) 459–473.

[27] G. H. Golub, C. F. van Loan, Matrix Computations, 3rd Edition, Johns
Hopkins University Press, Baltimore and London, 1996.

Ralf Möller received a Ph.D. in electrical engineering
from the Technical University of Ilmenau, Germany, and
a Venia legendi in computer science from the Univer-
sity of Zurich, Switzerland. He is heading the Cognitive
Robotics group at the Max Planck Institute for Psycho-
logical Research. His research interests include behavior-
based approaches to visual cognition, visual navigation,
biorobotics, neuromorphic systems, and parallel compu-
tation.

Heiko Hoffmann is currently a Ph.D. student in the
Cognitive Robotics group at the Max Planck Institute for
Psychological Research. He received his diploma degree
in physics from the University of Heidelberg. His research
interests include recurrent neural networks, unsupervised
learning, and vision motor interaction.

25

