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Abstract

The temporal dynamics of soil structure is a typical phenomenon exhibited by shrinking clay soil. It causes substantial

difficulties for the characterization of soil properties and for the modeling of fundamental processes such as water flow and

solute transport. In this paper, we present a model for crack formation that mimics the physical processes involved. The model is

based on a lattice of Hookean springs with finite strength and represents linear quasi elastic materials. It reproduces prominent

features of the nonlinear dynamics of crack network development observable in nature like the characteristic shape of

aggregates and the characteristic angles of bifurcations and also leads to realistic overall appearances of the pattern. The free

parameters of the model can be related to physical properties of the material and to the boundary conditions during shrinkage by

desiccation and crack formation. We demonstrate the variety of crack patterns through a systematic exploration of the

parameters. The different properties of the obtained crack patterns are quantified with respect to a few basic geometric measures

that are evaluated for the dynamics of crack formation and for the final crack pattern. The proposed model has the potential to

provide the dynamics of material properties which are highly significant for modeling flow and transport in clay soil.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamics of crack formation in clay soils

presents a major difficulty for modeling the flow of
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water as well as the transport of dissolved substances

and particulate matter. Moreover, the penetration of

plant roots and microbial processes are strongly

affected by the dynamics of continuous macropores.

Clay content, mineralogy and the physical boundary

conditions govern the characteristics of a crack

network that forms and evolves with decreasing water

content. Thereby, a variable network of macropores is
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formed, which is highly significant for infiltrating

water during rainfall events as well as for water

evaporation during dry periods. Today, state-of-the-art

models of water flow and solute transport are capable

of treating water and solute transport within macro-

pores and within the surrounding soil matrix sepa-

rately to account for the frequently observed

preferential flow (e.g. van Genuchten and Wierenga,

1976; Gerke and van Genuchten, 1993; Jarvis, 1994).

Assessing preferential flow requires information on

the volume fraction of macropores as well as their

hydraulic properties, but these are typically not

measured explicitly but lumped into effective param-

eters which have to be fitted to measured break-

through curves. Hence, the physical meaning of such

parameters which are solely related to a certain

experiment, remains unclear.

In clay soil, material properties related to macro-

pores as well as the hydraulic properties of the soil

matrix are highly variable in time due to the swell–

shrink dynamics. The focus of this paper is on

modeling the dynamics of the crack network. The

final goal is to provide physical parameters as the

volume, size, and connectivity of cracks together with

the soil bulk density as relevant input for models of

flow and transport.

Modeling the dynamics of soil cracks is typically

focused on averaged quantities such as the mean crack

volume and the average width of cracks as a function

of matric potential (Askar and Jin, 2000; Greco, 2002)

or as a function of water content and soil depth

[Chertkov, 2000]. The detailed geometry of the crack

network including the spatial distribution of cracks

and their topology is usually neglected. A detailed

geometric representation of cracks was presented by

Perrier et al. (1995) who applied a fractal fragmenta-

tion algorithm to generate crack patterns at hierarch-

ical scales.Horgan and Young 2000 proposed a

detailed geometric model for two-dimensional crack

patterns in clay soil which produces realistic patterns.

However, in both applications, the generating algo-

rithm does not mimic the real physical process of

crack formation. Consequently, these models cannot

reproduce the dynamics of natural crack patterns.

Physically based models of soil cracking, based on

fracture mechanics theory, are still in their infancy and

can only consider the propagation of individual cracks

(Hallett et al., 1995; Nichols and Grismer, 1997;
Hallett and Newson, 2001).On the middle ground

between these two extremes, the process of crack

pattern formation as a self-organized system was

recently explored from the perspectives of statistical

physics. They focus on capturing the nature of the

fracture process to reproduce the observed character-

istic patterns. Typically, the basis of such models is a

two-dimensional lattice where the nodes are con-

nected through Hookean springs which break when a

critical strain is exceeded (Meakin, 1987; Hornig et

al., 1996; Malthe-Sorenssen et al., 1998; Kitsunezaki,

1999). Once a spring is broken, the distribution of

stress in the immediate neighborhood is affected and

the development of a crack starts reproducing the

phenomenology observed in experiments. Alterna-

tively, a network of electrical resistors or fuses can be

considered which obeys a similar phenomenology

after breakage of single fuses once a critical current is

exceeded (Colina et al., 1993).

In this paper we propose a similar model for crack

formation in soils which yields the full dynamics of

the crack network during desiccation and has the

potential to be adapted to natural materials and

boundary conditions. We focus on the complex

phenomenon of crack pattern development using

strong simplifications with respect to the physics of

individual crack development. However, it is antici-

pated that the proposed model can eventually be

combined with fracture mechanics theory by calculat-

ing the model parameters directly from microscopic

properties of the material. In a previous paper (Vogel

et al., 2004), a quantitative approach to describe the

geometry of two-dimensional crack networks was

presented which will be used here to quantitatively

compare the simulated crack patterns.
2. The Model

We consider a two-dimensional flat layer where the

formation of cracks is due to slow contraction of the

material as a result of water evaporation. We assume

that the thickness H of the layer is small enough and

the characteristic time of evaporation Te is long

enough to avoid gradients in water content within

the thin layer, i.e. H2Te is much smaller than the

diffusivity of water within the thin layer. We also

assume that the relaxation of strain caused by
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desiccation is the only contribution to the dissipation

of energy in the system. Our model to simulate crack

formation is similar to those presented by Kitsunezaki

(1999), Malthe-Sbrenssen et al. (1998) and Hornig et

al. (1996). We represent the clay layer by a two-

dimensional triangular network of simple Hookean

springs. Each node is connected to its six neighbors

by a spring with spring constant K and natural length

k, which is the length of the relaxed spring (Fig. 1).

Hence, the strain of each individual spring connecting

two nodes at the positions xi and xj respectively is

given by

eij ¼
jxi � xjj

k
� 1; ð1Þ

the net force acting on node i through its Ni neighbors

is

Fi ¼ �
X

jeNi

Kij

xi � xj

jxi � xjj
jxi � xjj � k
� �

ð2Þ

and the total energy at each node is given by

Ei ¼
1

2

X

jeNi

Kij jxi � xjj � k
� �2 ð3Þ

We simulate desiccation by reducing the relaxed

spring length k successively starting from d=

|xi�xj|=1 which is the distance of the nodes in the

initial lattice in arbitrary units. Reducing k increases

the contracting forces and the total energy within the
Fig. 1. Schematic sketch of the connection between two nodes at location x

length k. A crack occurs if the strain e ij exceeds the critical strain e ij
b, an

friction parameter l. The movement of nodes is calculated for nit iteratio
lattice. If the strain between two nodes exceeds a

critical threshold eij
b the spring will break and here-

after has no more impact on the energy distribution

within the network. The breakage of a spring has

immediate consequences for the forces on the nodes

previously connected by that spring. They are pulled

apart by the other springs which are still connected.

Hence, the nodes move towards a new location of

minimal energy according to Eq. (3). The net force on

the nodes can be obtained through Eq. (2) and the new

positions xiV of the nodes are obtained by solving Eq.

(2) for the condition

Fi ¼ 0 8i: ð4Þ

Thereby, the change in position jxiV�xij depends
on Fi. However, in our model, a node will move only

if Fi exceeds a certain friction l which is introduced

as a static adhesion of the nodes and is one free

parameter of the model. This is the major difference

compared to the models proposed by Kitsunezaki

(1999), Malthe-Sbrenssen et al. (1998) and Hornig et

al. (1996) where the nodes are connected through

additional springs to the ground.

Once a node has moved after the break of a

connected spring this movement affects the energy

distribution at the adjacent nodes and hence, these

nodes may move subsequently. In this way the whole

lattice is relaxed towards a new state of minimal

energy. This relaxation is allowed to emanate radially
i and xj through a spring with spring constant Kij and natural relaxed

d the nodes may move apart if the corresponding force exceeds the

ns (see text).
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from the broken location: at each step t of the iteration

only those nodes are considered where a connected

spring was broken or where the immediate neighbors

have moved at step t�1. This iterative relaxation of

the lattice introduces another parameter which is the

maximum number of iterations nit, performed each

time after a spring was broken. Depending on the

integer value of nit the lattice might not be relaxed

completely prior to the breakage of the next spring.

Heterogeneity is introduced through the threshold

ebij of the springs, which is taken for each individual

spring from a Gaussian probability distribution with

mean ē and variance r2 and distributed randomly in

space. Alternatively, we could choose to vary the

spring constants Kij accordingly which would produce

the same phenomenology. However the variation of

eij
b is computationally more efficient so we chose

Kij=1 to be constant. Then, the critical strain eij
b and

the friction l can be expressed as a fraction of the grid

constant d=1.

The basic flow chart of the model is given in Fig. 2

together with an example for the location of nodes and

the elongation of springs in the initial phase of crack

formation. For a given set of parameters, e,r¯ 2,l and

nit, we start with k=1 meaning the relaxed spring

lengths are equal to the distance of the nodes. To

break the complete symmetry of the initial lattice, we

chose the location of each node not exactly on the

coordinates of the triangular grid but added a random

value ba[�0.1, 0.1] to both of its coordinates. In a

first step the lattice is relaxed and checked if the strain

of some springs exceeds their individual threshold. If

yes, the spring which exceeds its threshold most is
Fig. 2. Flow chart of the model (left) and an example of a lattice aft
removed and the lattice relaxed by nit steps. This loop

is executed until no more springs have to be removed.

Then, the relaxed spring length is reduced by a

decrement d which increases the global energy and

the relaxation loop is entered again. The choice of d is

not important as long as the related increment of force

is smaller than the friction l.The simulation ends

when kmin as a given minimum value of the relaxed

spring length is reached.

Fig. 2 also illustrates the basic phenomenology of

the model. After the breakage of a spring at some

location in the lattice, the force in the adjacent springs

increases (see also Fig. 1). The probability that one of

these springs will break next is thus increased consid-

erably. In this way a self-accelerated process is

initialized that causes a crack to develop linearly along

its tips. This is also a prominent property of natural

crack formation.

Due to the heterogeneously distributed thresholds,

eij
b, such a self-propagating crack may encounter a

more resistant region and may change its direction

along the weakest spring. As a consequence, the stress

at the resulting bend will increase and the probability

of a branching of the crack at this point is increased.

An angle of 1208 is most likely in terms of total

energy dissipation. This reproduces another property

of natural crack formation (Vogel et al., 2004).

Perpendicular to a crack the springs are relaxed while

parallel to a crack the tension is slightly higher

compared to the fully connected lattice. Consequently,

if a crack tip approaches another already existing

crack, a coalescence of the two cracks will be most

likely at 908. This reproduces a third property which is
er the first springs are broken (see text for more information).
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frequently observed for the dynamics of natural crack

patterns. Finally, depending on the various model

parameters a characteristic network of cracks is

formed.

As a first step towards a description of the crack

dynamics, we consider a linear elastic material with

constant parameters K, ē and l. This model might be

linked to classical fracture mechanics through the

parameter K which is related to Youngs modulus, the

parameter ē which is related to the critical stress at

failure and l which is related to interfacial energy. In

reality, the situation is more complicated in that the

parameters are expected to depend on water content

and the crack dynamics is furthermore affected by the

compressibility of the medium. However, we believe

that our simplified representation capture the essential

features of the real system.

As a demonstration of our simple model, Fig. 3

shows an example of a developing crack network

together with the energy distribution within the

network of springs. The nodes at the boundaries are

not allowed to move perpendicular to the boundary.

The largest stress is clearly at the tips of growing

cracks but also at bends of deflected cracks or in the

center of aggregates. Therefore, new cracks are

created at these locations.
3. Simulations

The model depends on four parameters: the mean

critical strain ē, its variance r2, the friction l and the

relaxation parameter nit. Given all the simplifying

assumptions, we interpret these parameters as being

related to material properties and physical boundary

conditions during desiccation. The mean threshold ē

is associated with the elasticity of the material and the
Fig. 3. Different stages of modeled crack formation. The grey values are pro

values represent a higher stress.
variance r2 describes its microscopic heterogeneity.

The friction l may be inversely proportional to the

thickness of the shrinking layer. The relaxation

parameter nit may be related to the speed of

desiccation. It might be interpreted as a dimensionless

quantity relating the characteristic times of external

forcing, text, to the characteristic times of the internal

dynamics tint by nit=text /tint.

In the following we demonstrate the behavior of

the model for various settings of the relevant

parameters. We keep the mean threshold ē=0.25

fixed. This is based on the idea that changing ē will

not enrich the variety of crack patterns, since the same

processes act at different values of k. In Fig. 4

different simulations of the final crack pattern for

different values of r2, l and nit are shown.

Obviously, a wide spectrum of crack patterns is

obtained. Beside this qualitative conclusion, the

different crack patterns can be described quantita-

tively including their dynamics. This is done using

fundamental geometric properties, the Minkowski

numbers, as proposed by Vogel et al., 2004. These

numbers comprise the area density AA=m0[L
2L�2],

the length density LA=m1[LL
�2] and the number

density NA=m2[L
�2] of cracks which in the following

are referred to as Minkowski densities mk (Mecke,

2000). m2 is equal to the density of the Euler number

which is defined as the number of isolated cracks

minus the number of loops in the crack network and

herewith describes the connectivity of the crack

network. The Minkowski densities of our simulations

are expressed in arbitrary units of length which might

be related to the pixel size of the images. All

Minkowski densities can be obtained as a function

of time during crack formation to capture the

dynamics of the geometry. In our model time is

inversely proportional to the water content which is
portional to the energy of the springs, cracks are black. Brighter grey



Fig. 4. Crack patterns simulated with various heterogeneity r2, various friction l and various relaxation intensities nit. The series P1YP2,

P1YP3, and P1YP4 are subjected to further quantitative analyzes.
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directly related to the relaxed spring length k. Hence,
we analyze the geometry of the crack pattern as a

function of the mean expansion of the springs u=1�k
as a substitute for time or water content, respectively,

to get a description of the dynamics.

3.1. Effect of heterogeneity

As shown in Fig. 4, the crack pattern becomes

more irregular with increasing heterogeneity. This is

because with increasing r2 the probability that a

crack changes its direction, due to local heterogene-

ities of the threshold eij
b, increases. Moreover, there is

an increasing number of springs with eij
bbē which
break without inducing the formation of a larger

crack. This leads to a large number of small isolated

cracks.

In Fig. 5 this phenomenology is quantified in

terms of the Minkowski densities during crack

formation. The formation of cracks starts earlier for

higher heterogeneity. However the development of

the crack network is more gradual compared to the

more homogeneous case. Here, the crack pattern is

developed abruptly once the process is initiated, i.e.

once the relaxed spring length k has fallen below a

critical value. This characteristic effect of hetero-

geneity can be seen very clearly from the dynamics

of the area and the length density of the cracks. The



Fig. 5. Dynamics of area density (left), length density (middle) and Euler number (right) of simulated crack patterns with increasing

heterogeneity (r2=0.1, 0.15, 0.2) shown with increasing dash length.

H.-J. Vogel et al. / Geoderma 125 (2005) 213–223 219
Euler number as well as the length densities reflect

the increasing number of isolated cracks with

increasing heterogeneity.

The occurrence of a large number of isolated cracks

as obtained for high heterogeneities is not reported in

the literature and was also not observed in our own

experiments (Vogel et al., 2004). This raises the

question if the physical base of our model is false, or

if the model ignores other processes that are relevant in

nature. Plastic deformation which is ignored in our

model should produce even more isolated cracks, since

the zone of influence of individual cracks is reduced as

discussed below for the parameters of friction and

relaxation intensity. On the other hand such micro-

scopic failures may also occur in nature but they might

be difficult to detect because they are too small. In our

model the spatial resolution is restricted by the

separation of nodes which is of the order of 1/10 to

1/100 of the size of aggregates. In clay, the ratio

between the size of clay minerals and the size of

aggregates is typically much smaller so that individual

microscopic defects might not be visible. Though less

important for water flow, these microscopic defects are

expected to have a significant effect on the strength of

the material and thus on the developing crack pattern at

lower water content.

3.2. Effect of friction

Qualitatively, Fig. 4 shows that the width of cracks

and the size of aggregates decrease with increasing

friction. This can be expected since friction restrains
the movement of nodes and thus limits the width of

individual cracks. As a consequence, the total energy

in the center of the aggregates increases so that more

cracks are generated here. In summary, the character-

istic length scale of the crack pattern becomes smaller

and the irregularity of the pattern increases with

increasing friction.

The area and length densities (Fig. 6) during

crack formation indicate that for larger friction l
the crack pattern is formed later, meaning at a

higher level of global energy. However the Euler

number shows that the first cracks appear at the

same critical energy, which has to be expected since

mean and variance of the threshold eb are the same

for the different simulations. With increasing fric-

tion, however, the self-accelerated process after the

initial crack formation is retarded because the

movement of the nodes is restricted by friction.

The increasing number of isolated cracks as a

consequence of increasing friction is reflected by

the Euler number. This is true at the beginning as

well as during crack formation where new cracks

appear inside aggregates.

The friction parameter could be related to the

thickness of the clay layer since the influence of the

non-shrinking base, and herewith the friction, de-

creases with increasing thickness of the layer. The

correlation between the size of aggregates and the

thickness of the shrinking layer was demonstrated

experimentally for various materials from coffee

powder (Groisman and Kaplan, 1994) to alumina/

water slurry (Shorlin and de Bruyn, 2000).



Fig. 6. Dynamics of area density (left), length density (middle) and Euler number (right) of simulated crack patterns with increasing friction

(l=0.0025, 0.005, 0.01) shown with increasing dash length.
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3.3. Effect of relaxation intensity

The relaxation parameter nit affects the crack pattern

in a similar way as the friction (Fig. 4). The common

physical aspect is that the zone of influence of a single

broken spring is reduced when the relaxation parameter

becomes smaller which is the same for an increased

friction. Consequently, more cracks are formed inde-

pendently leading to a more dispersed crack pattern.

However, in contrast to an increased friction the

shrinkage process is not stopped but only slowed down

by a reduced relaxation intensity, so that the self

accelerated process of crack formation is less disturbed

compared to the case of high friction. Consequently the

resulting crack pattern shows less isolated small cracks

in the center of aggregates.
Fig. 7. Dynamics of area density (left), length density (middle) and Euler n

intensity (nit=4, 9, 15) shown with increasing dash length.
The similarity between the effect of friction and

relaxation intensity is reflected by the dynamics of the

area density of cracks (Fig. 7). The retarded move-

ment of nodes at low values of nit leads to a retarded

development of the crack pattern as with high values

of l. However the dynamics of the length density and

the Euler number are different. Once the crack

network is formed, indicated by the sharp maximum

of m1, the aggregates shrink gradually without the

creation of new isolated cracks and the Euler number

decreases due to the coalescence of initially inde-

pendent cracks.

The relaxation parameter of the model could be

related to the intensity of the desiccation process. It is

a measure of a characteristic time available for

equilibration of local energy gradients between single
umber (right) of simulated crack patterns with increasing relaxation



Fig. 8. Distance maps of crack patterns shown in Fig. 4: P1 (left), P2 (middle) and P2 after removing the isolated small cracks (right). The grey

level corresponds to the orthogonal distance of each pixel to the boundary of the crack network.
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crack events. Naturally, this time becomes shorter

with increasing rate of water evaporation.

3.4. Minkowski functions of final crack patterns

Up to now, we analyzed the dynamics of the

simulated crack patterns qualitatively and quantita-

tively by means of Minkowski densities. To compare

the final crack patterns in more detail, we calculated

the Minkowski functions as proposed by (Vogel et

al., 2004). Thereby, the Minkowski numbers—area,

length and Euler number—are measured for subsets

with a given minimum distance to the crack

boundary. This was done for regions within aggre-

gates and within cracks. The different subsets are

obtained from ddistance mapsT of the structure

containing the orthogonal distance of each pixel to

the crack boundary as its grey value. The distances

are obtained through morphological erosions by

various distances r of the cracks and the aggregates,
Fig. 9. Minkowski functions of area density (left), length density (middle) a

4: P1 solid line, P2 dotted, P3 dashed, and P4 dashed-dotted. Subsets with

with positive r.
respectively (Vogel et al., 2004). Examples for the

distance maps of the crack pattern P1 and P2 (Fig. 4)

are shown in Fig. 8. Due to the larger aggregates in

P1 we find larger distances, i.e. higher grey levels

within the aggregates. The crack pattern P2 contains

many small isolated cracks in the center of the

aggregates. These small cracks are typically formed

by single broken springs, with a scale clearly

separated from the length scales of the macroscopic

crack network. In the following, our analysis is

focused on the macroscopic crack network and we

thus removed the small cracks prior to the measure-

ment of Minkowski functions. The distance map of

P2 after removing the microcracks is also shown in

Fig. 8.

The Minkowski functions of the extreme patterns

in Fig. 4, P1–4, are shown in Fig. 9. For rb0 we

consider subsets within the cracks, for rN0 subsets

within the aggregates and for r=0 the Minkowski

densities of the original crack patterns are recovered.
nd Euler number (right) for the extreme crack patterns shown in Fig.

in the cracks are indicated with negative r, those within aggregates



Fig. 10. Frequency distribution of bifurcation angles for the extreme

crack patterns shown in Fig. 4: P1 solid line, P2 dotted, P3 dashed,

and P4 dashed dotted.
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The latter correspond to the results obtained for the

maximum of 1�k in Figs. 4–6 with the microcracks

ignored. The area density function m0(r) indicates an

almost identical total surface area of cracks for all

simulations. This can be explained by the threshold ē b

and the maximum expansion of springs, 1�k, which
was the same for all simulations. However the

different size distribution of cracks and aggregates is

clear from m0(r). The characteristic lengths decrease

in the order P1NP2NP3NP4 which corresponds to the

effect of heterogeneityNrelaxation intensityNfriction

for the parameter space considered here. The length

density functions m1(r) also reflects the different size

distribution. It becomes increasingly peaked in the

same order as the characteristic lengths becomes

smaller. The Euler number m0(r) describes the size

distribution of cracks and aggregates in terms of their

number density. The maximum of m0(r) for rb0

counts the number of cracks and is shifted towards

smaller distances with decreasing characteristic

length. The same is true for the number density of

aggregates evaluated by rN0.

The dynamics of the Minkowski numbers (Figs. 4–

6) together with the Minkowski functions (Fig. 9)

provide a first order geometric description of the

simulated crack patterns. The systematic evaluation of

the parameter space demonstrates the potential of our

model to describe various patterns. The experimental
results obtained by Vogel et al. (2004) for homoge-

neous mixtures of sand and bentonite lay within the

prospects of our model.

3.5. Angles of bifurcation

As an additional measure to characterize the form

of the crack pattern we determined the distribution of

angles within the crack network as described by Vogel

et al., 2004. The angles are divided into 12 classes

between 08 and 1808 and the relative frequency of

each class was determined. As shown in Fig. 10 this

distribution is similar for all simulations with a clear

maximum around 1208. Another maximum was found

at around 908. The latter is more striking for the

simulations with increased friction and with increased

heterogeneity. Here, more isolated cracks are formed

that rejoin existing cracks preferably at an angle of

908. This typical frequency distribution was also

found in experiments (Vogel et al., 2004) for different

mixtures of sand and bentonite. It can be seen as direct

consequence of the energy distribution within the

lattice of springs during crack formation as discussed

above. It should be noted that the geometry of the

underlying lattice of springs suggests the formation of

bifurcations at an angle of 1208. We found that for low

heterogeneities, i.e. r2Y08, the underlying lattice

clearly determines the angles of the crack pattern

(results not shown). However, with increasing hetero-

geneity the pattern becomes apparently independent

of the lattice geometry.
4. Conclusions

We presented a model of crack formation which

aims at mimicking the underlying physical processes.

The model is based on a lattice of Hookean springs of

finite strength. Shrinkage of a pseudo two-dimen-

sional clay surface is thus idealized by a linear elastic

process which is interrupted by the occurrence of

cracks. Through a systematic evaluation of the

parameter space we demonstrated the potential of

the model to describe natural crack patterns including

their dynamics. In particular:

! the model reproduces the characteristic dynamics

of crack formation in clay as quantified by the
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evolution of Minkowski densities during crack

formation.

! the model reproduces characteristic features of

natural crack patterns as quantified by Minkowski

functions and the distribution of bifurcation angles.

! the parameters of the model have immediate

physical meaning and hence, can be directly linked

to physical material properties and boundary

conditions.

This implies promising prospects for the charac-

terization of the dynamics of clay soils or other

swell–shrinking materials. The crack pattern at the

soil surface which is easily accessible could be

analyzed to estimate the model parameters. Then, the

dynamics of the crack network as well as the

dynamics of the bulk density of the aggregates is

provided by the model. This opens the perspective to

couple our model to state-of-the-art models of flow

and transport in soil including the phenomena of

preferential flow along macropores. Such models

currently use ad hoc formulations of separated flow

domains, i.e. fast macropore flow and slow matrix

flow, where the respective volume fractions are

obtained by fitting the model to experimental

observations. Our crack model has the potential to

be extended to three-dimension through either simple

assumptions on the penetration depth of cracks or by

an explicit representation of the three dimensions

together with a full coupling with models for water

flow. Then, the crack model could provide the

fraction of macropores including their topology and

dynamics. Moreover, the dynamics of bulk density

may be used for scaling of the hydraulic properties

of the matrix domain. So far, our model is a first step

towards this direction.
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