next up previous contents
Next: 3. Mixture of local Up: 2.4 Kernel PCA Previous: 2.4.2 Centering in feature


2.4.3 Common kernel functions

The kernel function needs to be a scalar product in some feature space. A sufficient condition is that the kernel matrix is positive semidefinite (Schölkopf et al., 1998b; Schölkopf and Smola, 2002, p. 44). Some common kernel functions that fulfill this condition are the polynomial kernel,

k($\displaystyle \bf x$,$\displaystyle \bf y$) = ($\displaystyle \bf x^{T}_{}$$\displaystyle \bf y$)d (2.33)

with a constant integer d, the Gaussian kernel,

k($\displaystyle \bf x$,$\displaystyle \bf y$) = exp$\displaystyle \left(\vphantom{-\frac{\Vert{\bf x}-{\bf y}\Vert^2}{2\sigma^2}}\right.$ - $\displaystyle {\frac{{\Vert{\bf x}-{\bf y}\Vert^2}}{{2\sigma^2}}}$$\displaystyle \left.\vphantom{-\frac{\Vert{\bf x}-{\bf y}\Vert^2}{2\sigma^2}}\right)$ (2.34)

with a constant $ \sigma$ > 0, and the inverse multiquadric kernel,

k($\displaystyle \bf x$,$\displaystyle \bf y$) = $\displaystyle {\frac{{1}}{{\sqrt{\Vert{\bf x}-{\bf y}\Vert^2+c}}}}$ (2.35)

with a constant c > 0 (Schölkopf and Smola, 2002, p. 54). The last two functions result in a kernel matrix with full rank (Micchelli, 1986). That is, all eigenvectors are linearly independent. Thus, the dimensionality of the feature space is not restricted (it is infinite).


next up previous contents
Next: 3. Mixture of local Up: 2.4 Kernel PCA Previous: 2.4.2 Centering in feature
Heiko Hoffmann
2005-03-22